ﻻ يوجد ملخص باللغة العربية
The emission of electromagnetic radiation by charges moving uniformly in a Lorentz-violating vacuum is studied. The analysis is performed within the classical Maxwell-Chern-Simons limit of the Standard-Model Extension (SME) and confirms the possibility of a Cherenkov-type effect. In this context, various properties of Cherenkov radiation including the rate, polarization, and propagation features, are discussed, and the back-reaction on the charge is investigated. An interpretation of this effect supplementing the conventional one is given. The emerging physical picture leads to a universal methodology for studying the Cherenkov effect in more general situations.
The current article reviews results on vacuum Cherenkov radiation obtained for modified fermions. Two classes of processes can occur that have completely distinct characteristics. The first one does not include a spin flip of the radiating fermion, w
We study an extension of QED involving a light pseudoscalar (an axion-like particle), together with a very massive fermion which has Lorentz-violating interactions with the photon and the pseudoscalar, including a nonminimal Lorentz-violating couplin
We compute the full vacuum polarization tensor in the minimal QED extension. We find that its low-energy limit is dominated by the radiatively induced Chern-Simons-like term and the high-energy limit is dominated by the c-type coefficients. We invest
Radiative corrections in quantum field theories with small departures from Lorentz symmetry alter structural aspects of the theory, in particular the definition of asymptotic single-particle states. Specifically, the mass-shell condition, the standar
Perturbative calculations in quantum field theory often require the regularization of infrared divergences. In quantum electrodynamics, such a regularization can for example be accomplished by a photon mass introduced via the Stueckelberg method. The