ﻻ يوجد ملخص باللغة العربية
A comprehensive study is performed of general massive, tensor, two-loop Feynman diagrams with two and three external legs. Reduction to generalized scalar functions is discussed. Integral representations, supporting the same class of smoothness algorithms already employed for the numerical evaluation of ordinary scalar functions, are introduced for each family of diagrams.
We show how to evaluate tensor one-loop integrals in momentum space avoiding the usual plague of Gram determinants. We do this by constructing combinations of $n$- and $(n-1)$-point scalar integrals that are finite in the limit of vanishing Gram dete
We briefly sketch the methods for a numerically stable evaluation of tensor one-loop integrals that have been used in the calculation of the complete electroweak one-loop corrections to $PepPemto4 $fermions. In particular, the improvement of the new
We report on the progress in constructing contracted one-loop tensors. Analytic results for rank R=4 tensors, cross-checked numerically, are presented for the first time.
These notes were inspired by the course Quantum Field Theory from a Functional Integral Point of View given at the University of Zurich in Spring 2017 by Santosh Kandel. We describe Feynmans path integral approach to quantum mechanics and quantum fie
We present a new algorithm for the reduction of one-loop emph{tensor} Feynman integrals with $nleq 4$ external legs to emph{scalar} Feynman integrals $I_n^D$ with $n=3,4$ legs in $D$ dimensions, where $D=d+2l$ with integer $l geq 0$ and generic dimen