ﻻ يوجد ملخص باللغة العربية
We present a new algorithm for the reduction of one-loop emph{tensor} Feynman integrals with $nleq 4$ external legs to emph{scalar} Feynman integrals $I_n^D$ with $n=3,4$ legs in $D$ dimensions, where $D=d+2l$ with integer $l geq 0$ and generic dimension $d=4-2epsilon$, thus avoiding the appearance of inverse Gram determinants $()_4$. As long as $()_4 eq 0$, the integrals $I_{3,4}^D$ with $D>d$ may be further expressed by the usual dimensionally regularized scalar functions $I_{2,3,4}^d$. The integrals $I_{4}^D$ are known at $()_4 equiv 0$, so that we may extend the numerics to small, non-vanishing $()_4$ by applying a dimensional recurrence relation. A numerical example is worked out. Together with a recursive reduction of 6- and 5-point functions, derived earlier, the calculational scheme allows a stabilized reduction of $n$-point functions with $nleq 6$ at arbitrary phase space points. The algorithm is worked out explicitely for tensors of rank $Rleq n$.
We report on the progress in constructing contracted one-loop tensors. Analytic results for rank R=4 tensors, cross-checked numerically, are presented for the first time.
A method for reducing Feynman integrals, depending on several kinematic variables and masses, to a combination of integrals with fewer variables is proposed. The method is based on iterative application of functional equations proposed by the author.
We discuss briefly the first numerical implementation of the Loop-Tree Duality (LTD) method. We apply the LTD method in order to calculate ultraviolet and infrared finite multi-leg one-loop Feynman integrals. We attack scalar and tensor integrals wit
For loop integrals, the standard method is reduction. A well-known reduction method for one-loop integrals is the Passarino-Veltman reduction. Inspired by the recent paper [1] where the tadpole reduction coefficients have been solved, in this paper w
We show how to evaluate tensor one-loop integrals in momentum space avoiding the usual plague of Gram determinants. We do this by constructing combinations of $n$- and $(n-1)$-point scalar integrals that are finite in the limit of vanishing Gram dete