ﻻ يوجد ملخص باللغة العربية
Combining the QCD dipole model with the Good and Walker picture, we formulate diffractive dissociation of a photon of virtuality Q^2 off a hadronic target, in the kinematical regime in which Q is close to the saturation scale and much smaller than the invariant mass of the diffracted system. We show how the obtained formula compares to the HERA data and discuss what can be learnt from such a phenomenology. In particular, we argue that diffractive observables in these kinematics provide useful pieces of information on the saturation regime of QCD.
Using the Good and Walker picture, we derive a simple formula for diffractive dissociation that can apply to recent data collected at HERA in the low Q2 regime.
We report on investigations concerning the production of large transverse momentum jets in DIS diffractive dissociation. These processes constitute a new class of events that allow for a clean test of perturbative QCD and of the hard (perturbative) p
We describe the formalism, and present the results, for a triple-Regge analysis of the available pp and pbar{p} high-energy data which explicitly accounts for absorptive corrections. In particular, we allow for the gap survival probability, S^2, in s
We have recently studied the QCD pomeron loop evolution equations in zero transverse dimensions [Shoshi:2005pf]. Using the techniques developed in [Shoshi:2005pf] together with the AGK cutting rules, we present a calculation of single, double and cen
We analyze the validity of a commonly used identification between structures of the virtual photon $gamma^*to Qbar Q$ and vector meson $Vto Qbar Q$ transitions. In the existing studies of $S$-wave vector-meson photoproduction in the literature, such