ﻻ يوجد ملخص باللغة العربية
We analyze the validity of a commonly used identification between structures of the virtual photon $gamma^*to Qbar Q$ and vector meson $Vto Qbar Q$ transitions. In the existing studies of $S$-wave vector-meson photoproduction in the literature, such an identification is typically performed in the light-front (LF) frame while the radial component of the meson wave function is rather postulated than computed from the first principles. The massive photon-like $Vto Qbar Q$ vertex, besides the $S$-wave component, also contains an extra $D$-wave admixture in the $Qbar Q$ rest frame. However, the relative weight of these contributions cannot be justified by any reasonable nonrelativistic $Qbar Q$ potential model. In this work, we investigate the relative role of the $D$-wave contribution starting from the photon-like quarkonium $Vto Qbar Q$ transition in both frames: in the $Qbar Q$ rest frame (with subsequent Melosh spin transform to the LF frame) and in the LF frame (without Melosh transform). We show that the photon-like transition imposed in the $Qbar Q$ rest frame leads to significant discrepancies with the experimental data. In the second case we find that the corresponding total $J/psi(1S)$ photoproduction cross sections are very close to those obtained with the $S$-wave only $Vto Qbar Q$ transition, both leading to a good description of the data. However, we find that the $S$-wave only transition leads to a better description of photoproduction data for excited heavy quarkonium states, which represent a more effective tool for study of $D$-wave effects. Consequently, the predictions for production of excited states based on the photon-like structure of $Vto Qbar Q$ transition should be treated with a great care due to a much stronger sensitivity of the $D$-wave contribution to the nodal structure of quarkonium wave functions.
In this work we present for the first time the comprehensive study of the Melosh spin rotation effects in diffractive electroproduction of S-wave heavy quarkonia off a nucleon target. Such a study has been performed within the color dipole approach u
In this work, we revise the conventional description of J/Psi(1S), Y(1S), Psi(2S) and Y(2S) elastic photo- and electroproduction off a nucleon target within the color dipole picture and carefully study various sources of theoretical uncertainties in
The $D$-wave admixture in quarkonium wave functions is acquired from the photonlike structure of $Vto Qbar Q$ transition in the light-front frame widely used in the literature. Such a $D$-wave ballast is not justified by any nonrelativistic model for
Recent discoveries by Belle and BESIII of charged exotic quarkonium-like resonances provide fresh impetus for study of heavy exotic hadrons. In the limit N_c --> infinity, M_Q --> infinity, the (Qbar Q qbar q) tetraquarks (TQ-s) are expected to be na
The differential cross section $dsigma/dq^2$ of diffractive electroproduction of heavy quarkonia on protons is a sensitive study tool for the interaction dynamics within the dipole representation. Knowledge of the transverse momentum transfer $vec q$