ﻻ يوجد ملخص باللغة العربية
Instead of right-handed neutrino singlets, the standard model is extended to include lepton triplets $(Sigma^+, Sigma^0, Sigma^-)$. Each quark and lepton family may now transform under an anomaly-free $U(1)_X$ gauge symmetry, known already for many years. A new sequential application is presented, using just the one Higgs doublet of the standard model, together with two $U(1)_X$ Higgs singlets. The resulting structure has hierarchical quark and lepton masses, as well as a viable seesaw neutrino mass matrix.
We revisit our previous model proposed in Ref. cite{Okada:2013iba}, in which lepton masses except the tauon mass are generated at the one-loop level in a TeV scale physics. Although in the previous work, rather large Yukawa couplings constants; i.e.,
General Two Higgs Doublet Models (2HDM) are popular Standard Model extensions but feature flavor changing interactions and lack neutrino masses. We discuss a 2HDM where neutrino masses are generated via type I seesaw and propose an extension where ne
We show that in a large class of models based on anomalous U(1) symmetry which addresses the fermion mass hierarchy problem, leptonic flavor changing processes are induced that are in the experimentally interesting range. The flavor violation occurs
We propose a radiative lepton model, in which the charged lepton masses are generated at one-loop level, and the neutrino masses are induced at two-loop level. On the other hand, tau mass is derived at tree level since it is too heavy to generate rad
We propose a model with the left-handed and right-handed continuous Abelian gauge symmetry; $U(1)_Ltimes U(1)_R$. Then three right-handed neutrinos are naturally required to achieve $U(1)_R$ anomaly cancellations, while several mirror fermions are al