ﻻ يوجد ملخص باللغة العربية
We extend the formalism based on perturbative QCD that was developed in our previous work, and compute the hyperfine splittings of the bottomonium spectrum as well as the fine and hyperfine splittings of the charmonium spectrum. All the corrections up to O(alpha_s^5 m) are included in the computations. We find agreement (with respect to theoretical uncertainties) with the experimental values whenever available and give predictions for not yet observed splittings.
Recently it has been shown that the gross structure of the bottomonium spectrum is reproduced reasonably well within the non-relativistic boundstate theory based on perturbative QCD. In that calculation, however, the fine splittings and the S-P level
We present a calculation of the hyperfine splittings in bottomonium using lattice Nonrelativistic QCD. The calculation includes spin-dependent relativistic corrections through O(v^6), radiative corrections to the leading spin-magnetic coupling and, f
We address the problem of observed charmonium decays which should be forbidden in perturbative QCD. We examine the model in which these decays proceed through a gluonic component of the $J/Psi$ and the $eta_c$, arising from a mixing of $(cbar c)$ and
Many new states in the charmonium and bottomonium mass region were recently discovered by the BaBar, Belle and CDF Collaborations. We use the QCD Sum Rule approach to study the possible structure of some of these states. In particular we identify the
In the present work, we study the OZI-allowed three body open flavor decay properties of higher vector charmonium and bottomonium states with an extended quark pair creation model. For the bottomonium system, we get that (i) the $BBpi$ and $B^*B^*pi$