ترغب بنشر مسار تعليمي؟ اضغط هنا

Improved Perturbative QCD Approach to the Bottomonium Spectrum

58   0   0.0 ( 0 )
 نشر من قبل Yukinari Sumino
 تاريخ النشر 2002
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Recently it has been shown that the gross structure of the bottomonium spectrum is reproduced reasonably well within the non-relativistic boundstate theory based on perturbative QCD. In that calculation, however, the fine splittings and the S-P level splittings are predicted to be considerably narrower than the corresponding experimental values. We investigate the bottomonium spectrum within a specific framework based on perturbative QCD, which incorporates all the corrections up to O(alpha_S^5 m_b) and O(alpha_S^4 m_b), respectively, in the computations of the fine splittings and the S-P splittings. We find that the agreement with the experimental data for the fine splittings improves drastically due to an enhancement of the wave functions close to the origin as compared to the Coulomb wave functions. The agreement of the S-P splittings with the experimental data also becomes better. We find that natural scales of the fine splittings and the S-P splittings are larger than those of the boundstates themselves. On the other hand, the predictions of the level spacings between consecutive principal quantum numbers depend rather strongly on the scale mu of the operator propto C_A/(m_b r^2). The agreement of the whole spectrum with the experimental data is much better than the previous predictions when mu simeq 3-4 GeV for alpha_S(M_Z)=0.1181. There seems to be a phenomenological preference for some suppression mechanism for the above operator.

قيم البحث

اقرأ أيضاً

272 - S. Recksiegel , Y. Sumino 2003
We extend the formalism based on perturbative QCD that was developed in our previous work, and compute the hyperfine splittings of the bottomonium spectrum as well as the fine and hyperfine splittings of the charmonium spectrum. All the corrections u p to O(alpha_s^5 m) are included in the computations. We find agreement (with respect to theoretical uncertainties) with the experimental values whenever available and give predictions for not yet observed splittings.
We develop the first systematic theoretical approach to dijet asymmetries in hadron-hadron collisions based on the perturbative QCD (pQCD) expansion and the Sudakov resummation formalism. We find that the pQCD calculation at next-to-leading order is indispensable to describe the experimental data, while the Sudakov resummation formalism is vital near the end points where the pQCD expansion fails to converge due to the appearance of large Sudakov logarithms. Utilizing our resummation improved pQCD approach, we obtain good agreement with the most up-to-date fully corrected ATLAS data on dijet asymmetry in $pp$ collisions. Combining with the BDMPS jet energy loss formalism, we extract the value of jet transport coefficient $hat{q}_0 sim 2$-$6~textrm{GeV}^2/textrm{fm}$ for the quark-gluon-plasma created in $PbPb$ collisions at 2.76A TeV. This work paves the way for a more complete and deeper understanding of the properties of strongly-coupled QCD medium via the studies of dijet asymmetries in relativistic heavy-ion collisions.
The variational approach to QCD in Coulomb gauge developed previously by the Tubingen group is improved by enlarging the space of quark trial vacuum wave functionals through a new Dirac structure in the quark-gluon coupling. Our ansatz for the quark vacuum wave functional ensures that all linear divergences cancel in the quark gap equation resulting from the minimization of the energy calculated to two-loop order. The logarithmic divergences are absorbed in a renormalized coupling which is adjusted to reproduce the phenomenological value of the quark condensate. We also unquench the gluon propagator and show that the unquenching effects are generally small and amount to a small reduction in the mid-momentum regime.
229 - Yue-Long Shen , Zhi-Tian Zou , 2019
In this paper we calculate the power corrections to the pion transition form factor within the framework of perturbative QCD approach on the basis of $k_T$ factorization. The power suppressed contributions from higher twist pion wave functions and th e hadronic structure of photon are investigated. We find that there exists strong cancellation between the two kinds contributions, thus the total power corrections considered currently are very small, and the prediction of the leading power contribution with joint resummation improved perturbative QCD approach is almost unchanged. This result confirms that the pion transition form factor is a good platform to constrain the nonperturbative parameters in pion wave functions. Moreover, our result can accommodate the anomalous data from BaBar, or agrees with results from Belle according to the choice of Gegebauer moment in the pion wave function, and the more precise experimental data from Belle-II is expected.
73 - Ya Li , Da-Cheng Yan , Zhou Rui 2021
In this work, we provide estimates of the branching ratios, direct $CP$ asymmetries and triple product asymmetries in $B_{(s)} to (pipi)(Kpi)$ decays in the perturbative QCD approach, where the $pipi$ and $Kpi$ invariant mass spectra are dominated by the vector resonances $rho(770)$ and $K^*(892)$, respectively. Some scalar backgrounds, such as $f_0(500,980) to pipi$ and $K^*_0(1430) to Kpi$ are also accounted for. The $rho(700)$ is parametrized by the Gounaris-Sakurai function. The relativistic Breit-Wigner formula for the $f_0(500)$ and Flatte model for the $f_0(980)$ are adopted to parameterize the time-like scalar form factors $F_S(omega^2)$. We also use the D.V. Bugg model to parameterize the $f_0(500)$ and compare the relevant theoretical predictions from different models. While in the region of $Kpi$ invariant mass, the $K^*_0(1430)$ is described with the LASS lineshape and the $K^*(892)$ is modeled by the Breit-Wigner function. We find that the decay rates for the considered decay modes agree with currently available data within errors. As a by-product, we extract the branching ratios of two-body decays $B_{(s)} to rho(770)K^*(892)$ from the corresponding four-body decay modes and calculate the relevant polarization fractions. Our prediction of longitudinal polarization fraction for $B^0to rho(770)^0 K^*(892)^0$ decay deviates a lot from the recent LHCb measurement, which should be resolved. It is shown that the direct $CP$ asymmetries are large due to the sizable interference between the tree and penguin contributions, but they are small for the tree-dominant or penguin-dominant processes. The PQCD predictions for the triple product asymmetries are small which are expected in the standard model, and consistent with the current data reported by the LHCb Collaboration.Our results can be tested by the future precise data from the LHCb and Belle II experiments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا