ترغب بنشر مسار تعليمي؟ اضغط هنا

Signatures of Supernova Neutrino Oscillations into Extra Dimensions

55   0   0.0 ( 0 )
 نشر من قبل Marco Cirelli
 تاريخ النشر 2003
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider the mixing of muon and tau neutrinos with sterile fermion fields propagating in extra dimensions in the context of core collapse supernova physics, extending the analysis of the electron neutrino case done in a previous work. We show that the potentially dramatic modifications to the supernova evolution are prevented by a mechanism of feedback, so that no severe bounds on the parameters of the extra dimensions need to be imposed. Nevertheless, the supernova core evolution is significantly modified. We discuss the consequences on the delayed explosion mechanism and the compatibility with the SN1987A signal. Then, for the cases of both nu_{mu,tau} and nu_e mixing with bulk fermions, we analyse the distinctive features of the signal on Earth.



قيم البحث

اقرأ أيضاً

We consider a model where right-handed neutrinos propagate in a large compactified extra dimension, engendering Kaluza-Klein (KK) modes, while the standard model particles are restricted to the usual 4-dimensional brane. A mass term mixes the KK mode s with the standard left-handed neutrinos, opening the possibility of change the 3 generation mixing pattern. We derive bounds on the maximum size of the extra dimension from neutrino oscillation experiments. We show that this model provides a possible explanation for the deficit of nu_e in Ga solar neutrino calibration experiments and of the anti-nu_e in short baseline reactor experiments.
We investigate the potential of the long-baseline Deep Underground Neutrino Experiment (DUNE) to study large-extra-dimension (LED) models originally proposed to explain the smallness of neutrino masses by postulating that right-handed neutrinos, unli ke all standard model fermion fields, can propagate in the bulk. The massive Kaluza-Klein (KK) modes of the right-handed neutrino fields modify the neutrino oscillation probabilities and can hence affect their propagation. We show that, as far as DUNE is concerned, the LED model is indistinguishable from a $(3 + 3N)$-neutrino framework for modest values of $N$; $N$ = 1 is usually a very good approximation. Nonetheless, there are no new sources of $CP$-invariance violation other than one $CP$-odd phase that can be easily mapped onto the $CP$-odd phase in the standard three-neutrino paradigm. We analyze the sensitivity of DUNE to the LED framework, and explore the capability of DUNE to differentiate the LED model from the three-neutrino scenario and from a generic $(3 + 1)$-neutrino model.
87 - Kate Scholberg 2017
A suite of detectors around the world is poised to measure the flavor-energy-time evolution of the ten-second burst of neutrinos from a core-collapse supernova occurring in the Milky Way or nearby. Next-generation detectors to be built in the next de cade will have enhanced flavor sensitivity and statistics. Not only will the observation of this burst allow us to peer inside the dense matter of the extreme event and learn about the collapse processes and the birth of the remnant, but the neutrinos will bring information about neutrino properties themselves. This review surveys some of the physical signatures that the currently-unknown neutrino mass pattern will imprint on the observed neutrino events at Earth, emphasizing the most robust and least model-dependent signatures of mass ordering.
We explore non-standard Higgs phenomenology in the Gaugephobic Higgs model in which the Higgs can be lighter than the usually quoted current experimental bound. The Higgs propagates in the bulk of a 5D space-time and Electroweak Symmetry Breaking occ urs by a combination of boundary conditions in the extra dimension and an elementary Higgs. The Higgs can thus have a significantly suppressed coupling to the other Standard Model fields. A large enough suppression can be found to escape all limits and allow for a Higgs of any mass, which would be associated with the discovery of W and Z Kaluza-Klein resonances at the LHC. The Higgs can be precisely discovered at B-factories while the LHC would be insensitive to it due to high backgrounds. In this letter we study the Higgs discovery mode in Upsilon(3S), Upsilon(2S), and Upsilon(1S) decays, and the model parameter space that will be probed by BaBar, Belle, and CLEO data. In the absence of an early discovery of a heavy Higgs at the LHC, A Super-B factory would be an excellent option to further probe this region.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا