ﻻ يوجد ملخص باللغة العربية
Modifications of Heisenbergs uncertainty relations have been proposed in the literature which imply a minimum position uncertainty. We study the low energy effects of the new physics responsible for this by examining the consequent change in the quantum mechanical commutation relations involving position and momenta. In particular, the modifications to the spectrum of the hydrogen atom can be naturally interpreted as a varying (with energy) fine structure constant. From the data on the energy levels we attempt to constrain the scale of the new physics and find that it must be close to or larger than the weak scale. Experiments in the near future are expected to change this bound by at least an additional order of magnitude.
Studies in string theory and quantum gravity suggest the existence of a finite lower limit $Delta x_0$ to the possible resolution of distances, at the latest on the scale of the Planck length of $10^{-35}m$. Within the framework of the euclidean path
In the framework of the generalized uncertainty principle, the position and momentum operators obey the modified commutation relation $[X,P]=ihbarleft(1+beta P^2right)$ where $beta$ is the deformation parameter. Since the validity of the uncertainty
In this paper, we study the thermodynamics of quantum harmonic oscillator in the Tsallis framework and in the presence of a minimal length uncertainty. The existence of the minimal length is motivated by various theories such as string theory, loop q
In quantum mechanics with minimal length uncertainty relations the Heisenberg-Weyl algebra of the one-dimensional harmonic oscillator is a deformed SU(1,1) algebra. The eigenvalues and eigenstates are constructed algebraically and they form the infin
Based on quantum mechanical framework for the minimal length uncertainty, we demonstrate that the generalized uncertainty principle (GUP) parameter could be best constrained by recent gravitational waves observations on one hand. On other hand this s