ﻻ يوجد ملخص باللغة العربية
We consider five dimensional supersymmetric warped scenarios in which the Standard Model quark and lepton fields are localized on the ultraviolet brane, while the Standard Model gauge fields propagate in the bulk. Supersymmetry is assumed to be broken on the infrared brane. The relative sizes of supersymmetry breaking effects are found to depend on the hierarchy between the infrared scale and the weak scale. If the infrared scale is much larger than the weak scale the leading supersymmetry breaking effect on the visible brane is given by gaugino mediation. The gaugino masses at the weak scale are proportional to the square of the corresponding gauge coupling, while the dominant contribution to the scalar masses arises from logarithmically enhanced radiative effects involving the gaugino mass that are cutoff at the infrared scale. While the LSP is the gravitino, the NLSP which is the stau is stable on collider time scales. If however the infrared scale is close to the weak scale then the effects of hard supersymmetry breaking operators on the scalar masses can become comparable to those from gaugino mediation. These operators alter the relative strengths of the couplings of gauge bosons and gauginos to matter, and give loop contributions to the scalar masses that are also cutoff at the infrared scale. The gaugino masses, while exhibiting a more complicated dependence on the corresponding gauge coupling, remain hierarchical and become proportional to the corresponding gauge coupling in the limit of strong supersymmetry breaking. The scalar masses are finite and a loop factor smaller than the gaugino masses. The LSP remains the gravitino.
We review the motivation for Gauge-Mediated Supersymmetry Breaking and discuss some recent advances.
We introduce new mechanisms for the communication of supersymmetry breaking via gauge interactions. These models do not require complicated dynamics to induce a nonvanishing F term for a singlet. The first class of models communicates supersymmetry b
We discuss the possibility of finding scenarios, within type IIB string theory compactified on Calabi-Yau orientifolds with fluxes, for realizing gauge mediated supersymmetry breaking. We find that while in principle such scenarios are not ruled out,
In the context of the weakly coupled heterotic string, we propose a new model of mediating supersymmetry breaking. The breakdown of supersymmetry in the hidden sector is transmitted to anti-generation fields via gravitational interactions. Subsequent
In the context of warped extra-dimensional models with all fields propagating in the bulk, we address the phenomenology of a bulk scalar Higgs boson, and calculate its production cross section at the LHC as well as its tree-level effects on mediating