We introduce new mechanisms for the communication of supersymmetry breaking via gauge interactions. These models do not require complicated dynamics to induce a nonvanishing F term for a singlet. The first class of models communicates supersymmetry b
reaking to the visible sector through a ``mediator field that transforms under both a messenger gauge group of the dynamical supersymmetry breaking sector and the standard model gauge group. This model has distinctive phenomenology; in particular, the scalar superpartners should be heavier by at least an order of magnitude than the gaugino superpartners. The second class of models has phenomenology more similar to the ``standard messenger sectors. A singlet is incorporated, but the model does not require complicated mechanisms to generate a singlet F term. The role of the singlet is to couple fields from the dynamical symmetry breaking sector to fields transforming under the standard model gauge group. We also mention a potential solution to the $mu$ problem.
We discuss the possibility of finding scenarios, within type IIB string theory compactified on Calabi-Yau orientifolds with fluxes, for realizing gauge mediated supersymmetry breaking. We find that while in principle such scenarios are not ruled out,
in practice it is hard to get acceptable constructions, since typically, supersymmetry breaking cannot be separated from the stabilization of the light modulus.
We investigate multilepton LHC signals arising from electroweak processes involving sleptons. We consider the framework of general gauge mediated supersymmetry breaking, focusing on models where the low mass region of the superpartner spectrum consis
ts of the three generations of charged sleptons and the nearly massless gravitino. We demonstrate how such models can provide an explanation for the anomalous four lepton events recently observed by the CMS collaboration, while satisfying other existing experimental constraints. The best fit to the CMS data is obtained for a selectron/smuon mass of around 145 GeV and a stau mass of around 90 GeV. These models also give rise to final states with more than four leptons, offering alternative channels in which they can be probed and we estimate the corresponding production rates at the LHC.
We provide a simple solution to the $mu/B_mu$ problem in the gauge-mediated Next-to-Minimal Supersymmetric Standard Model. In this model the messenger sector contains one pair of $3+bar 3$ and one pair of $2+bar 2$ messengers. These two messenger pai
rs couple to different gauge singlets in the hidden sector in which supersymmetry (SUSY) is broken. Such a gauge-mediation structure can naturally arise in many backgrounds. Because of the two effective SUSY breaking scales $frac{< F_i>}{< M_i>}$ in the messenger sector, the renormalization group evolutions of the soft SUSY breaking parameters can be properly modified, leading to a negative enough singlet soft mass square $m_N^2(Lambda_{EW})$ and hence reasonable $mu/B_mu$ values. In most of the perturbative (up to the GUT scale) parameter region, as a result, the electroweak scale is stabilized and phenomenologically interesting mass spectra of particles and superparticles are obtained. In addition, this model favors large values of $tanbeta$: $5 sim 50$ and a heavy scalar spectrum. With the relatively large $tanbeta$, the light $U(1)_R$ pseudoscalar (mainly appearing in the low-scale gauge-mediated SUSY breaking models) becomes extremely singlet-like, and is no longer a problem in this model. These features apply to all cases of low-, intermediate- and high-scale gauge-mediated SUSY breaking.
It is well known that Zee type neutrino mass matrix can provide bi-maximal neutrino mixing for three neutrinos. We study the reconciliation of this model with the gauge mediated supersymmetry breaking scenario, which naturally suppresses the large fl
avor changing neutral current and CP violation in the supersymmetric standard model. When the messenger fields have suitable B-L charges, the radiative correction naturally induces the Zee neutrino mass matrix, which provides tiny neutrino masses and large lepton flavor mixings. Our numerical results are consistent with the neutrino oscillation experiments in both three and four neutrino models.