ﻻ يوجد ملخص باللغة العربية
We investigate the in-medium modification of the charmonium breakup processes due to the Mott effect for light (pi, rho) and open-charm (D, D*) quark-antiquark bound states at the chiral/deconfinement phase transition. The Mott effect for the D-mesons effectively reduces the threshold for charmonium breakup cross sections, which is suggested as an explanation of the anomalous J/psi suppression phenomenon in the NA50 experiment. Further implications of finite-temperature mesonic correlations for the hadronization of heavy flavors in heavy-ion collisions are discussed.
We analyze recently compiled data on the production of open heavy flavor hadrons and quarkonia in e+e- as well as pp and p-nucleus collisions in terms of the statistical hadronization model. Within this approach the production of open heavy flavor ha
A general two Higgs doublet model (2HDM) is adopted to study the signature of flavor changing neutral Higgs (FCNH) decay $phi^0 to tbar{c}+bar{t}c$, where $phi^0$ could be a CP-even scalar ($H^0$) or a CP-odd pseudoscalar ($A^0$). Measurement of the
Heavy flavor supplies a chance to constrain and improve the hadronization mechanism. We have established a sequential coalescence model with charm conservation and applied it to the charmed hadron production in heavy ion collisions. The charm conserv
We review one-particle inclusive production of heavy-flavored hadrons in a framework which resums the large collinear logarithms through the evolution of the FFs and PDFs and, at the same time, retains the full dependence on the heavy-quark mass with
We study the relevance of experimental data on heavy-flavor [$D^0$, $J/psi$, $Brightarrow J/psi$ and $Upsilon(1S)$ mesons] production in proton-lead collisions at the LHC to improve our knowledge of the gluon-momentum distribution inside heavy nuclei