ترغب بنشر مسار تعليمي؟ اضغط هنا

Gluon Shadowing in Heavy-Flavor Production at the LHC

260   0   0.0 ( 0 )
 نشر من قبل Hua-Sheng Shao
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the relevance of experimental data on heavy-flavor [$D^0$, $J/psi$, $Brightarrow J/psi$ and $Upsilon(1S)$ mesons] production in proton-lead collisions at the LHC to improve our knowledge of the gluon-momentum distribution inside heavy nuclei. We observe that the nuclear effects encoded in both most recent global fits of nuclear parton densities at next-to-leading order (nCTEQ15 and EPPS16) provide a good overall description of the LHC data. We interpret this as a hint that these are the dominant ones. In turn, we perform a Bayesian-reweighting analysis for each particle data sample which shows that each of the existing heavy-quark(onium) data set clearly points --with a minimal statistical significance of 7 $sigma$-- to a shadowed gluon distribution at small $x$ in the lead. Moreover, our analysis corroborates the existence of gluon antishadowing. Overall, the inclusion of such heavy-flavor data in a global fit would significantly reduce the uncertainty on the gluon density down to $xsimeq 7times 10^{-6}$ --where no other data exist-- while keeping an agreement with the other data of the global fits. Our study accounts for the factorization-scale uncertainties which dominate for the charm(onium) sector.

قيم البحث

اقرأ أيضاً

We present the reweighting of two sets of nuclear PDFs, nCTEQ15 and EPPS16, using a selection of experimental data on heavy-flavor meson [D0, J/psi, J/psi from B and Upsilon(1S)] production in proton-lead collisions at the LHC which were not used in the original determination of these nuclear PDFs. The reweighted PDFs exhibit significantly smaller uncertainties thanks to these new heavy-flavor constraints. We present a comparison with another selection of data from the LHC and RHIC which were not included in our reweighting procedure. The comparison is overall very good and serves as a validation of these reweighted nuclear PDF sets, which we dub nCTEQ15_rwHF & EPPS16_rwHF. This indicates that the LHC and forward RHIC heavy-flavor data can be described within the standard collinear factorization framework with the same (universal) small-x gluon distribution. We discuss how we believe such reweighted PDFs should be used as well as the limitations of our procedure.
We summarise the perspectives on heavy-quarkonium production at the LHC, both for proton-proton and heavy-ion runs, as emanating from the round table held at the HLPW 2008 Conference. The main topics are: present experimental and theoretical knowledg e, experimental capabilities, open questions, recent theoretical advances and potentialities linked to some new observables.
Using Soft-Collinear Effective Theory, we develop the transverse-momentum-dependent factorization formalism for heavy flavor dijet production in polarized-proton-electron collisions. We consider heavy flavor mass corrections in the collinear-soft and jet functions, as well as the associated evolution equations. Using this formalism, we generate a prediction for the gluon Sivers asymmetry for charm and bottom dijet production at the future Electron-Ion Collider. Furthermore, we compare theoretical predictions with and without the inclusion of finite quark masses. We find that the heavy flavor mass effects can give sizable corrections to the predicted asymmetry.
We review our transverse momentum dependent factorization and resummation formalism for heavy flavor dijet production at the EIC. In this formalism, we have calculated the heavy flavor mass corrections in the collinear-soft and jet functions, and in the resummed expression for the cross section. By establishing this formalism, we then study the effects of the mass corrections by providing predictions at the EIC for the massive case and for the case where the mass is neglected. We find that the heavy flavor mass effects can give sizable corrections to the predicted asymmetry.
We discuss the production of $D$-mesons and $J/psi$ in high multiplicity proton-proton and proton-nucleus collisions within the Color-Glass-Condensate (CGC) framework. We demonstrate that the modification of the LHC data on $D$ and $J/psi$ yields in high multiplicity events relative to minimum bias events arise from a significant enhancement of the gluon saturation scales of the corresponding rare parton configurations in the colliding protons and nuclei. For a given event multiplicity, we predict these relative yields to be energy independent from $sqrt{s}=200$ GeV at RHIC to the highest LHC energies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا