ﻻ يوجد ملخص باللغة العربية
We consider a five-dimensional brane world scenario where the fifth dimension is compactified on $S^1/Z_2$. We show that the familiar four-dimensional cosmology on our brane is easily recovered during a primordial stage of inflation if supersymmetry is exploited. Even if some vacuum energy density appears localized on our three brane, heavy supersymmetric bulk fields adjust themselves and acquire a nontrivial configuration along the extra-dimension. This phenomenon redistributes uniformly the energy density across the bulk and the resulting energy-momentum tensor does not display any singularity associated to the initial localized energy density on our three-brane. No jumps across the brane are present for the derivatives of the metric and Einsteins equations are solved by constant solutions along the fifth dimension. Our findings make it clear that cosmological phenomena in the supersymmetric brane world scenario must be studied taking properly into account bulk supersymmetric states. This comment is particularly relevant when applied to (super)gravity since in supersymmetric brane world scenarios, even though chiral matter and gauge fields may be restricted to live on boundaries, gravity multiplets always propagate in the bulk.
We revisit the issue of gravitational contributions to soft masses in five-dimensional sequestered models. We point out that, unlike for the case of F-type supersymmetry breaking, for D-type breaking these effects generically give positive soft masse
We emphasize the necessity of a delicate interplay between the gauge and gravitational sectors of five-dimensional brane worlds in creating phenomenologically relevant vacua. We discuss locally supersymmetric brane worlds with unflipped and flipped f
Brane supersymmetry breaking is a peculiar phenomenon that can occur in perturbative orientifold vacua. It results from the simultaneous presence, in the vacuum, of non-mutually BPS sets of BPS branes and orientifolds, which leave behind a net tensio
We study the cosmology of the Randall-Sundrum brane-world where the Einstein-Hilbert action is modified by curvature correction terms: a four-dimensional scalar curvature from induced gravity on the brane, and a five-dimensional Gauss-Bonnet curvatur
In this paper we study dynamical supersymmetry breaking in absence of gravity with the matter content of the minimal supersymmetric standard model. The hidden sector of the theory is a strongly coupled gauge theory, realized in terms of microscopic v