ترغب بنشر مسار تعليمي؟ اضغط هنا

Brane cosmology with curvature corrections

59   0   0.0 ( 0 )
 نشر من قبل Kofinas Georgios
 تاريخ النشر 2003
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the cosmology of the Randall-Sundrum brane-world where the Einstein-Hilbert action is modified by curvature correction terms: a four-dimensional scalar curvature from induced gravity on the brane, and a five-dimensional Gauss-Bonnet curvature term. The combined effect of these curvature corrections to the action removes the infinite-density big bang singularity, although the curvature can still diverge for some parameter values. A radiation brane undergoes accelerated expansion near the minimal scale factor, for a range of parameters. This acceleration is driven by the geometric effects, without an inflaton field or negative pressures. At late times, conventional cosmology is recovered.



قيم البحث

اقرأ أيضاً

We consider the Randall-Sundrum brane-world model with bulk-brane energy transfer where the Einstein-Hilbert action is modified by curvature correction terms: a four-dimensional scalar curvature from induced gravity on the brane, and a five-dimension al Gauss-Bonnet curvature term. It is remarkable that these curvature terms will not change the dynamics of the brane universe at low energy. Parameterizing the energy transfer and taking the dark radiation term into account, we find that the phantom divide of the equation of state of effective dark energy could be crossed, without the need of any new dark energy components. Fitting the two most reliable and robust SNIa datasets, the 182 Gold dataset and the Supernova Legacy Survey (SNLS), our model indeed has a small tendency of phantom divide crossing for the Gold dataset, but not for the SNLS dataset. Furthermore, combining the recent detection of the SDSS baryon acoustic oscillations peak (BAO) with lower matter density parameter prior, we find that the SNLS dataset also mildly favors phantom divide crossing.
We study a model of a scalar field minimally coupled to gravity, with a specific potential energy for the scalar field, and include curvature and radiation as two additional parameters. Our goal is to obtain analytically the complete set of configura tions of a homogeneous and isotropic universe as a function of time. This leads to a geodesically complete description of the universe, including the passage through the cosmological singularities, at the classical level. We give all the solutions analytically without any restrictions on the parameter space of the model or initial values of the fields. We find that for generic solutions the universe goes through a singular (zero-size) bounce by entering a period of antigravity at each big crunch and exiting from it at the following big bang. This happens cyclically again and again without violating the null energy condition. There is a special subset of geodesically complete non-generic solutions which perform zero-size bounces without ever entering the antigravity regime in all cycles. For these, initial values of the fields are synchronized and quantized but the parameters of the model are not restricted. There is also a subset of spatial curvature-induced solutions that have finite-size bounces in the gravity regime and never enter the antigravity phase. These exist only within a small continuous domain of parameter space without fine tuning initial conditions. To obtain these results, we identified 25 regions of a 6-parameter space in which the complete set of analytic solutions are explicitly obtained.
217 - Benjamin Shlaer 2012
We illustrate a framework for constructing models of chaotic inflation where the inflaton is the position of a D3 brane along the universal cover of a string compactification. In our scenario, a brane rolls many times around a non-trivial one-cycle, thereby unwinding a Ramond-Ramond flux. These flux monodromies are similar in spirit to the monodromies of Silverstein, Westphal, and McAllister, and their four-dimensional description is that of Kaloper and Sorbo. Assuming moduli stabilization is rigid enough, the large-field inflationary potential is protected from radiative corrections by a discrete shift symmetry.
In self-tuning brane-world models with extra dimensions, large contributions to the cosmological constant are absorbed into the curvature of extra dimensions and consistent with flat 4d geometry. In models with conventional Lagrangians fine-tuning is needed nevertheless to ensure a finite effective Planck mass. Here, we consider a class of models with non conventional Lagrangian in which known problems can be avoided. Unfortunately these models are found to suffer from tachyonic instabilities. An attempt to cure these instabilities leads to the prediction of a positive cosmological constant, which in turn needs a fine-tuning to be consistent with observations.
We calculate the amplitude of gravitational waves produced by inflation on a de Sitter brane embedded in five-dimensional anti-de Sitter bulk spacetime, extending previous calculations in Randall-Sundrum type cosmology to include the effect of induce d gravity corrections on the brane. These corrections arise via a term in the brane action that is proportional to the brane Ricci scalar. We find that, as in the Randall-Sundrum case, there is a mass gap between the discrete zero-mode and a continuum of massive bulk modes, which are too heavy to be excited during inflation. We give the normalization of the zero-mode as a function of the Hubble rate on the brane and are thus able to calculate the high energy correction to the spectrum of gravitational wave (tensor) modes excited on large scales during inflation from initial vacuum fluctuations on small scales. We also calculate the amplitude of density (scalar) perturbations expected due to inflaton fluctuations on the brane, and show that the usual four-dimensional consistency relation for the tensor/scalar ratio remains valid for brane inflation with induced gravity corrections.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا