ﻻ يوجد ملخص باللغة العربية
We present a complete, next-to-leading-order (NLO), leading-twist QCD analysis of deeply virtual Compton scattering (DVCS) observables, in the ${bar {MS}}$ scheme, and in the kinematic ranges of the H1, ZEUS and HERMES experiments. We use a modified form of Radyushkins ansatz for the input model for the generalized parton distributions. We present results for leading order (LO) and NLO for representative observables and find that they compare favourably to the available data.
We present a detailed next-to-leading order (NLO) leading twist QCD analysis of deeply virtual Compton scattering (DVCS) observables, for several different input scenarios, in the MS-bar scheme. We discuss the size of the NLO effects and the behavior
A factorized Regge-pole model for deeply virtual Compton scattering is suggested. The use of an effective logarithmic Regge-Pomeron trajectory provides for the description of both ``soft (small $|t|$) and ``hard (large $|t|$) dynamics. The model cont
Diffractive deeply virtual Compton scattering (DiDVCS) is the process $gamma^*(- Q^2) + N rightarrow rho^0 + gamma^* (Q^2)+ N$, where N is a nucleon or light nucleus, in the kinematical regime of large rapidity gap between the $rho^0$ and the final p
We studied the effects of NLO $Q^2$ evolution of generalized parton distributions (GPDs) using the aligned-jet model for the singlet quark and gluon GPDs at an initial evolution scale. We found that the skewness ratio for quarks is a slow logarithmic
Recently we have shown that exclusive QCD photon-induced reactions at low Mandelstam-t are best described by Regge exchanges in the entire scaling region, and not only for low values of Bjorken-x. In this paper we explore this crucial Regge behavior