ترغب بنشر مسار تعليمي؟ اضغط هنا

Physics at the front-end of a neutrino factory: a quantitative appraisal

102   0   0.0 ( 0 )
 نشر من قبل Michelangelo Mangano
 تاريخ النشر 2001
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a quantitative appraisal of the physics potential for neutrino experiments at the front-end of a muon storage ring. We estimate the forseeable accuracy in the determination of several interesting observables, and explore the consequences of these measurements. We discuss the extraction of individual quark and antiquark densities from polarized and unpolarized deep-inelastic scattering. In particular we study the implications for the undertanding of the nucleon spin structure. We assess the determination of alpha_s from scaling violation of structure functions, and from sum rules, and the determination of sin^2(theta_W) from elastic nu-e and deep-inelastic nu-p scattering. We then consider the production of charmed hadrons, and the measurement of their absolute branching ratios. We study the polarization of Lambda baryons produced in the current and target fragmentation regions. Finally, we discuss the sensitivity to physics beyond the Standard Model.



قيم البحث

اقرأ أيضاً

In response to the growing interest in building a Neutrino Factory to produce high intensity beams of electron- and muon-neutrinos and antineutrinos, in October 1999 the Fermilab Directorate initiated two six-month studies. The first study, organized by N. Holtkamp and D. Finley, was to investigate the technical feasibility of an intense neutrino source based on a muon storage ring. This design study has produced a report in which the basic conclusion is that a Neutrino Factory is technically feasible, although it requires an aggressive R&D program. The second study, which is the subject of this report, was to explore the physics potential of a Neutrino Factory as a function of the muon beam energy and intensity, and for oscillation physics, the potential as a function of baseline.
296 - David Neuffer 2017
A neutrino factory or muon collider requires the capture and cooling of a large number of muons. Scenarios for capture, bunching, phase-energy rotation and initial cooling of {mu}s produced from a proton source target have been developed, initially f or neutrino factory scenarios. They require a drift section from the target, a bunching section and a {phi}-{delta}E rotation section leading into the cooling channel. Important concerns are rf limitations within the focusing magnetic fields and large losses in the transport. The currently preferred cooling channel design is an HFOFO Snake configuration that cools both {mu}+ and {mu}- transversely and longitudinally. The status of the design is presented and variations are discussed.
256 - D. Neuffer 2012
We discuss the design of the muon capture front end of the neutrino factory International Design Study. In the front end, a proton bunch on a target creates secondary pions that drift into a capture transport channel, decaying into muons. A sequence of rf cavities forms the resulting muon beams into strings of bunches of differing energies, aligns the bunches to (nearly) equal central energies, and initiates ionization cooling. The muons are then accelerated to high energy where their decays provide neutrino beams. For the International Design Study (IDS), a baseline design must be developed and optimized for an engineering and cost study. We present a baseline design that can be used to establish the scope of a future neutrino Factory facility.
325 - J. Aysto , A. Baldini , A. Blondel 2001
The physics potential of an intense source of low-energy muons is studied. Such a source is a necessary stage towards building the neutrino factories and muon colliders which are being considered at present. The CERN Neutrino Factory could deliver mu on beams with intensities 3-4 orders of magnitude higher than available now, with large freedom in the choice of the time structure. Low-energy muon physics contributes to many fields of basic research, including rare muon decays, i.e., decays that do not conserve muon number, measurements of fundamental constants, the muon anomalous magnetic moment, determination of the Lorentz structure of the weak interaction, QED tests, CPT tests, proton and nuclear charge distributions (even for short-lived isotopes), and condensed matter physics. In studying the experimental programme, we analyse the present limitations, list the requirements on the new muon beams, and describe some ideas on how to implement these beam lines in a CERN neutrino factory complex.
We examine the prospects of detecting an analogous process of neutrinoless double beta decay at a neutrino factory from a high energy muon storage ring. Limits from LEP experiments, neutrinoless double beta decay as well as from global fits have to b e incorporated and severely restrict the results. We investigate what limits on light and heavy effective Majorana neutrino masses can be obtained and compare them with existing ones. Discussed are also contributions from right-handed neutrinos and purely right-handed interactions. Other ``new physics contributions to the same final state might produce large event numbers.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا