ﻻ يوجد ملخص باللغة العربية
We analyze the CP violating ratio epsilon/epsilon and rare K and B decays in the MSSM with minimal flavour and CP violation, including NLO QCD corrections and imposing constraints on the supersymmetric parameters coming from epsilon, B_{d,s}^0-bar B_{d,s}^0 mixings, B to X_s gamma, Delta rho in the electroweak precision studies and from the lower bound on the neutral Higgs mass. We provide a compendium of phenomenologically relevant formulae in the MSSM. Denoting by T(Q) the MSSM prediction for a given quantity normalized to the Standard Model result we find the ranges: 0.53 < T(epsilon/epsilon) < 1.07, 0.65 < T(K^+ to pi^+ nu nubar) < 1.02, 0.41 < T(K_L to pi^0 nu nubar) < 1.03, 0.48 < T(K_L to pi^0 e^+ e^-) < 1.10, 0.73 < T(B to X_s nu nubar) < 1.34 and 0.68 < T(B_s to mu^+ mu^-) < 1.53. We point out that these ranges will be considerably reduced when the lower bounds on the neutral Higgs mass and tan beta improve. Some contour plots illustrate the dependences of the quantities above on the relevant supersymmetric parameters. As a byproduct of this work we update our previous analysis of epsilon/epsilon in the SM and find in NDR epsilon/epsilon = (9.2^{+6.8}_{-4.0}), a value 15 % higher than in our 1999 analysis.
We summarize a recent strategy for a global analysis of the B -> pi pi, pi K systems and rare decays. We find that the present B -> pi pi and B -> pi K data cannot be simultaneously described in the Standard Model. In a simple extension in which new
The ratio $epsilon/epsilon$ measures the size of the direct CP violation in $K_Ltopipi$ decays $(epsilon^prime)$ relative to the indirect one described by $epsilon$ and is very sensitive to new sources of CP violation. As such it played a prominent r
Three years after the completion of the next-to-leading order calculation, the status of the theoretical estimates of $epsilon/epsilon$ is reviewed. In spite of the theoretical progress, the prediction of $epsilon/epsilon$ is still affected by a 100%
We present new results for the matrix elements of the Q_6 and Q_4 penguin operators, evaluated in a large-Nc approach which incorporates important O(N_c^2frac{n_f}{N_c}) unfactorized contributions. Our approach shows analytic matching between short-
Within the differential equation method for multiloop calculations, we examine the systems irreducible to $epsilon$-form. We argue that for many cases of such systems it is possible to obtain nontrivial quadratic constraints on the coefficients of $e