ﻻ يوجد ملخص باللغة العربية
We present new results for the matrix elements of the Q_6 and Q_4 penguin operators, evaluated in a large-Nc approach which incorporates important O(N_c^2frac{n_f}{N_c}) unfactorized contributions. Our approach shows analytic matching between short- and long-distance scale dependences within dimensional renormalization schemes, such as MS-bar. Numerically, we find that there is a large positive contribution to the Delta I =1/2 matrix element of Q_6 and hence to the direct CP-violation parameter epsilon/epsilon. We also present results for the Delta I = 1/2 rule in K -> pi pi amplitudes, which incorporate the related and important ``eye-diagram contributions of O(N_c^2frac{1}{N_c}) from the Q_2 operator (i.e. the penguin-like contraction). The results lead to an enhancement of the Delta I = 1/2 effective coupling. The origin of the large unfactorized contributions which we find is discussed in terms of the relevant scales of the problem.
Within the differential equation method for multiloop calculations, we examine the systems irreducible to $epsilon$-form. We argue that for many cases of such systems it is possible to obtain nontrivial quadratic constraints on the coefficients of $e
The ratio $epsilon/epsilon$ measures the size of the direct CP violation in $K_Ltopipi$ decays $(epsilon^prime)$ relative to the indirect one described by $epsilon$ and is very sensitive to new sources of CP violation. As such it played a prominent r
Recently, the standard model prediction of $epsilon/epsilon$ was improved, and a discrepancy from the experimental results was reported at the $2.9sigma$ level. We study the chargino contributions to $Z$ penguin especially with the vacuum stability c
We generated configurations with the parametrized fixed-point Dirac operator D_{FP} on a (1.6 fm)^4 box at a lattice spacing a=0.13 fm. We compare the distributions of the three lowest k=1,2,3 eigenvalues in the nu= 0,1,2 topological sectors with tha
The Standard Model prediction for $epsilon/epsilon$ based on recent lattice QCD results exhibits a tension with the experimental data. We solve this tension through $W_R^+$ gauge boson exchange in the $SU(2)_Ltimes SU(2)_Rtimes U(1)_{B-L}$ model with