ﻻ يوجد ملخص باللغة العربية
A lattice determination of the form factor and decay constants for the semileptonic decay of heavy pseudoscalar (PS) mesons at zero recoil is presented from which the soft pion relation is satisfied. Chiral extrapolation of the form factor is performed at constant $q^2$. Pole dominance is used to extrapolate the form factor in heavy quark mass. At the B mass, the form factor at zero recoil lies somewhat below the ratio of decay constants; the relation remains satisfied within error.
We present a study for the pion decay constant $f_pi$ in the quenched approximation to lattice QCD with the Kogut-Susskind (KS) quark action, with the emphasis given to the renormalization problems. Numerical simulations are carried out at the coupli
We present results for the binding energies for He and ^3He nuclei calculated in quenched lattice QCD at the lattice spacing of a = 0.128 fm with a heavy quark mass corresponding to m_pi = 0.8 GeV. Enormous computational cost for the nucleus correlat
Since gluons in QCD are interacting fundamental constituents just as quarks are, we expect that in addition to mesons made from a quark and an antiquark, there should also be glueballs and hybrids (bound states of quarks, antiquarks and gluons). In g
We present a non-perturbative calculation for the pion decay constant with quenched Kogut-Susskind quarks. Numerical simulations are carried out at $beta = 6.0$ and 6.2 with various operators extending over all flavors. The renormalization correction
We present preliminary study of parton distribution inside the pion using mixed action approach with HYP smeared valence clover quarks on HISQ sea within the framework of Large Momentum Effective Theory. We use 2+1 flavor $48^3 times 64$ HISQ lattice