ﻻ يوجد ملخص باللغة العربية
We couple c=-2 matter to 2-dimensional gravity within the framework of dynamical triangulations. We use a very fast algorithm, special to the c=-2 case, in order to test scaling of correlation functions defined in terms of geodesic distance and we determine the fractal dimension d_H with high accuracy. We find d_H=3.58(4), consistent with a prediction coming from the study of diffusion in the context of Liouville theory, and that the quantum space-time possesses the same fractal properties at all distance scales similarly to the case of pure gravity.
We study the fractal structure of space-time of two-dimensional quantum gravity coupled to c=-2 conformal matter by means of computer simulations. We find that the intrinsic Hausdorff dimension d_H = 3.58 +/- 0.04. This result supports the conjecture
In the context of the quest for a holographic formulation of quantum gravity, we investigate the basic boundary theory structure for loop quantum gravity. In 3+1 space-time dimensions, the boundary theory lives on the 2+1-dimensional time-like bounda
We study a c=-2 conformal field theory coupled to two-dimensional quantum gravity by means of dynamical triangulations. We define the geodesic distance r on the triangulated surface with N triangles, and show that dim[r^{d_H}]= dim[N], where the frac
Two-dimensional random surfaces are studied numerically by the dynamical triangulation method. In order to generate various kinds of random surfaces, two higher derivative terms are added to the action. The phases of surfaces in the two-dimensional p
By restricting the functional integration to the Regge geometries, we give the discretized version of the well known path integral formulation of 2--dimensional quantum gravity in the conformal gauge. We analyze the role played by diffeomorphisms in