ترغب بنشر مسار تعليمي؟ اضغط هنا

Charmed-Bottom Mesons from Lattice QCD

133   0   0.0 ( 0 )
 نشر من قبل Nilmani Mathur
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We present ground state spectra of mesons containing a charm and a bottom quark. For the charm quark we use overlap valence quarks while a non-relativistic formulation is utilized for the bottom quark on a background of 2+1+1 flavors HISQ gauge configurations generated by the MILC collaboration. The hyperfine splitting between $1S$ states of $B_c$ mesons is found to be $56^{+4}_{-3}$ MeV. We also study the baryons containing only charm and bottom quarks and predict their ground state masses. Results are obtained at three lattice spacings.

قيم البحث

اقرأ أيضاً

We report the ground state masses of hadrons containing at least one charm and one bottom quark using lattice quantum chromodynamics. These include mesons with spin (J)-parity (P) quantum numbers J(P): 0(-), 1(-), 1(+) and 0(+) and the spin-1/2 and 3 /2 baryons. Among these hadrons only the ground state of 0(-) is known experimentally and therefore our predictions provide important information for the experimental discovery of all other hadrons with these quark contents.
The charmed-strange meson masses are calculated on a quenched lattice QCD. The charm and strange quark propagators are calculated on the same lattice with the overlap fermion. $16^3times 72$ lattice with Wilson gauge action at $beta=0.6345$ are used. The charm and strange quark masses are determined by fitting the $J/psi$ and $phi$ masses respectively. The charmed strange meson spectrum for the scalar, axial, pseudoscalar and vector channels are calculated. They agree with experiments. In particular, we find the scalar meson mass to be 2248(78)MeV which is in agreement with that of D_{s0}^*(2317).
We present the energy spectra of the low lying doubly-charmed baryons using lattice quantum chromodynamics. We precisely predict the ground state mass of the charmed-strange Omega(cc) (1/2+) baryon to be 3712(11)(12) MeV which could well be the next doubly-charmed baryon to be discovered at the LHCb experiment at CERN. We also predict masses of other doubly-charmed strange baryons with quantum numbers 3/2+, 1/2-, and 3/2-.
On a lattice with 2+1-flavor dynamical domain-wall fermions at the physical pion mass, we calculate the decay constants of $D_{s}^{(*)}$, $D^{(*)}$ and $phi$. The lattice size is $48^3times96$, which corresponds to a spatial extension of $sim5.5$ fm with the lattice spacing $aapprox 0.114$ fm. For the valence light, strange and charm quarks, we use overlap fermions at several mass points close to their physical values. Our results at the physical point are $f_D=213(5)$ MeV, $f_{D_s}=249(7)$ MeV, $f_{D^*}=234(6)$ MeV, $f_{D_s^*}=274(7)$ MeV, and $f_phi=241(9)$ MeV. The couplings of $D^*$ and $D_s^*$ to the tensor current ($f_V^T$) can be derived, respectively, from the ratios $f_{D^*}^T/f_{D^*}=0.91(4)$ and $f_{D_s^*}^T/f_{D_s^*}=0.92(4)$, which are the first lattice QCD results. We also obtain the ratios $f_{D^*}/f_D=1.10(3)$ and $f_{D_s^*}/f_{D_s}=1.10(4)$, which reflect the size of heavy quark symmetry breaking in charmed mesons. The ratios $f_{D_s}/f_{D}=1.16(3)$ and $f_{D_s^*}/f_{D^*}=1.17(3)$ can be taken as a measure of SU(3) flavor symmetry breaking.
We present spectra of highly excited D and Ds mesons up to around 3.8 GeV determined using dynamical lattice QCD. We employ novel computational techniques and the variational method with a large basis of carefully constructed operators in order to ex tract and reliably identify the continuum spin of an extensive set of excited states. These include states with high spin and states identified as having an explicit gluonic contribution. Calculations were performed on two volumes, both with a pion mass of approximately 400 MeV, achieving a high statistical precision for both ground and excited states. We discuss our results in light of experimental observations, comment on the phenomenological implications and identify the lightest `supermultiplet of hybrid mesons in each sector.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا