ﻻ يوجد ملخص باللغة العربية
We present ground state spectra of mesons containing a charm and a bottom quark. For the charm quark we use overlap valence quarks while a non-relativistic formulation is utilized for the bottom quark on a background of 2+1+1 flavors HISQ gauge configurations generated by the MILC collaboration. The hyperfine splitting between $1S$ states of $B_c$ mesons is found to be $56^{+4}_{-3}$ MeV. We also study the baryons containing only charm and bottom quarks and predict their ground state masses. Results are obtained at three lattice spacings.
We report the ground state masses of hadrons containing at least one charm and one bottom quark using lattice quantum chromodynamics. These include mesons with spin (J)-parity (P) quantum numbers J(P): 0(-), 1(-), 1(+) and 0(+) and the spin-1/2 and 3
The charmed-strange meson masses are calculated on a quenched lattice QCD. The charm and strange quark propagators are calculated on the same lattice with the overlap fermion. $16^3times 72$ lattice with Wilson gauge action at $beta=0.6345$ are used.
We present the energy spectra of the low lying doubly-charmed baryons using lattice quantum chromodynamics. We precisely predict the ground state mass of the charmed-strange Omega(cc) (1/2+) baryon to be 3712(11)(12) MeV which could well be the next
On a lattice with 2+1-flavor dynamical domain-wall fermions at the physical pion mass, we calculate the decay constants of $D_{s}^{(*)}$, $D^{(*)}$ and $phi$. The lattice size is $48^3times96$, which corresponds to a spatial extension of $sim5.5$ fm
We present spectra of highly excited D and Ds mesons up to around 3.8 GeV determined using dynamical lattice QCD. We employ novel computational techniques and the variational method with a large basis of carefully constructed operators in order to ex