ﻻ يوجد ملخص باللغة العربية
The finite lattice method of series expansion has been used to extend low-temperature series for the partition function, order parameter and susceptibility of the $q$-state Potts model to order $z^{56}$ (i.e. $u^{28}$), $z^{47}$, $z^{43}$, $z^{39}$, $z^{39}$, $z^{39}$, $z^{35}$, $z^{31}$ and $z^{31}$ for $q = 2$, 3, 4, dots 9 and 10 respectively. These series are used to test techniques designed to distinguish first-order transitions from continuous transitions. New numerical values are also obtained for the $q$-state Potts model with $q>4$.
We present new results for the Kondo lattice model of strongly correlated electrons, in 1-, 2-, and 3-dimensions, obtained from high-order linked-cluster series expansions. Results are given for varies ground state properties at half-filling, and for
High temperature series expansions of the spin-spin correlation function for the plane rotator (or XY) model on the sc lattice are extended by three terms through order $beta^{17}$. Tables of the expansion coefficients are reported for the correlatio
The $SU(3)$ spin model with chemical potential corresponds to a simplified version of QCD with static quarks in the strong coupling regime. It has been studied previously as a testing ground for new methods aiming to overcome the sign problem of latt
We revisit the issue of worldline formulations for the q-state Potts model and discuss a worldline representation in arbitrary dimensions which also allows for magnetic terms. For vanishing magnetic field we implement a Hodge decomposition for resolv
A phenomenological approach to the ferromagnetic two dimensional Potts model on square lattice is proposed. Our goal is to present a simple functional form that obeys the known properties possessed by the free energy of the q-state Potts model. The d