ترغب بنشر مسار تعليمي؟ اضغط هنا

Three-point functions in noncompact lattice QED

66   0   0.0 ( 0 )
 نشر من قبل R. Horsley
 تاريخ النشر 1993
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We calculate fermion-antifermion-meson three-point functions in noncompact lattice QED with dynamical staggered fermions and use them to extract effective Yukawa couplings. The results are consistent with the hypothesis that QED is trivial.

قيم البحث

اقرأ أيضاً

Lattice QCD simulations are now reaching a precision where isospin breaking effects become important. Previously, we have developed a program to systematically investigate the pattern of flavor symmetry beaking within QCD and successfully applied it to meson and baryon masses involving up, down and strange quarks. In this Letter we extend the calculations to QCD + QED and present our first results on isospin splittings in the pseudoscalar meson and baryon octets. In particular, we obtain the nucleon mass difference of $M_n-M_p=1.35(18)(8),mbox{MeV}$ and the electromagnetic contribution to the pion splitting $M_{pi^+}-M_{pi^0}=4.60(20),mbox{MeV}$. Further we report first determination of the separation between strong and electromagnetic contributions in the $bar{MS}$ scheme.
We summarize the higher-loop perturbative computation of the ghost and gluon propagators in SU(3) Lattice Gauge Theory. Our final aim is to compare with results from lattice simulations in order to expose the genuinely non-perturbative content of the latter. By means of Numerical Stochastic Perturbation Theory we compute the ghost and gluon propagators in Landau gauge up to three and four loops. We present results in the infinite volume and $a to 0$ limits, based on a general fitting strategy.
Greens functions are a central element in the attempt to understand non-perturbative phenomena in Yang-Mills theory. Besides the propagators, 3-point Greens functions play a significant role, since they permit access to the running coupling constant and are an important input in functional methods. Here we present numerical results for the two non-vanishing 3-point Greens functions in 3d pure SU(2) Yang-Mills theory in (minimal) Landau gauge, i.e. the three-gluon vertex and the ghost-gluon vertex, considering various kinematical regimes. In this exploratory investigation the lattice volumes are limited to 20^3 and 30^3 at beta=4.2 and beta=6.0. We also present results for the gluon and the ghost propagators, as well as for the eigenvalue spectrum of the Faddeev-Popov operator. Finally, we compare two different numerical methods for the evaluation of the inverse of the Faddeev-Popov matrix, the point-source and the plane-wave-source methods.
We present a detailed study of the helicity-dependent and helicity-independent collinear parton distribution functions (PDFs) of the nucleon, using the quasi-PDF approach. The lattice QCD computation is performed employing twisted mass fermions with a physical value of the light quark mass. We give a systematic and in-depth account of the salient features entering in the evaluation of quasi-PDFs and their relation to the light-cone PDFs. In particular, we give details for the computation of the matrix elements, including the study of the various sources of systematic uncertainties, such as excited states contamination. In addition, we discuss the non-perturbative renormalization scheme used here and its systematics, effects of truncating the Fourier transform and different matching prescriptions.
We propose a novel lattice calculation of spontaneous chiral symmetry breaking in QED model with 2+1 dimensional fermion brane. Considering the relativistic action with gauge symmetry we rigorously carry out path integral in Monte-Carlo simulation wi th Fermi-velocity relevant to effective coupling constant. We numerically show the evidence of spontaneous chiral symmetry breaking in strong coupling region with chiral condensate, low-lying mode distribution and Nambu-Goldstone boson spectrum in bare Fermi-velocty $v=0.1$. This is a feasible study to investigate the phase structure of Graphene.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا