ﻻ يوجد ملخص باللغة العربية
The confinement scenario in Maximally Abelian gauge (MAG) is based on the concepts of Abelian dominance and of dual superconductivity. Recently, several groups pointed out the possible existence in MAG of ghost and gluon condensates with mass dimension 2, which in turn should influence the infrared behavior of ghost and gluon propagators. We present preliminary results for the first lattice numerical study of the ghost propagator and of ghost condensation for pure SU(2) theory in the MAG.
We investigate the Maximally Abelian (MA) Projection for a single $SU(2)$ instanton in continuum gauge theory. We find that there is a class of solutions to the differential MA gauge condition with circular monopole loops of radius $R$ centered on th
We perform the Monte Carlo study of the SU(3) non-Abelian Higgs model. We discuss phase structure and non-Abelian vortices by gauge invariant operators. External magnetic fields induce non-Abelian vortices in the color-flavor locked phase. The spatia
We study decomposition of $SU(2)$ gauge field into monopole and monopoleless components. After fixing the Maximal Abelian gauge in $SU(2)$ lattice gauge theory we decompose the nonabelian gauge field into the Abelian field created by monopoles and th
We perform various lattice numerical analyses with the energy-momentum tensor (EMT) defined through the gradient flow. We explore the spatial distribution of the stress tensor in static quark-anti-quark systems and thermodynamic quantities at nonzero
Hamiltonian formulation of lattice gauge theories (LGTs) is the most natural framework for the purpose of quantum simulation, an area of research that is growing with advances in quantum-computing algorithms and hardware. It, therefore, remains an im