ترغب بنشر مسار تعليمي؟ اضغط هنا

Decomposition of the SU(2) gauge field in the Maximal Abelian gauge

62   0   0.0 ( 0 )
 نشر من قبل Vitaly Bornyakov
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study decomposition of $SU(2)$ gauge field into monopole and monopoleless components. After fixing the Maximal Abelian gauge in $SU(2)$ lattice gauge theory we decompose the nonabelian gauge field into the Abelian field created by monopoles and the modified nonabelian field with monopoles removed. We then calculate respective static potentialis and show that the potential due to the modified nonabelian field is nonconfining while, as is well known, the Abelian field produces linear potential. We further find that the sum of these potentials approximates the nonabelian static potential with good precision at all distances considered. We conclude that at large distances the monopole field potential describes the classical energy of the hadronic string while the static potential due to the modified nonabelian field describes the string fluctuations energy.



قيم البحث

اقرأ أيضاً

The effects of the Gribov copies on the gluon and ghost propagators are investigated in SU(2) Euclidean Yang-Mills theory quantized in the maximal Abelian gauge. By following Gribovs original approach, extended to the maximal Abelian gauge, we are ab le to show that the diagonal component of the gluon propagator displays the characteristic Gribov type behavior. The off-diagonal component is found to be of the Yukawa type, with a dynamical mass originating from the dimension two gluon condensate, which is also taken into account. Furthermore, the off-diagonal ghost propagator exhibits infrared enhancement. Finally, we make a comparison with available lattice data.
We investigate the Maximally Abelian (MA) Projection for a single $SU(2)$ instanton in continuum gauge theory. We find that there is a class of solutions to the differential MA gauge condition with circular monopole loops of radius $R$ centered on th e instanton of width $rho$. However, the MA gauge fixing functional $G$ decreases monotonically as $R/rho rightarrow 0$. Its global minimum is the instanton in the singular gauge. We point out that interactions with nearby anti-instantons are likely to excite these monopole loops.
Finite temperature Euclidean SU(2) lattice gauge fields generated in the confinement phase close to the deconfinement phase transition are subjected to cooling. The aim is to identify long-living, almost-classical local excitations which carry (gener ically non-integer) topological charge. Two kinds of spatial boundary conditions (fixed holonomy and standard periodic boundary conditions) are applied. For the lowest-action almost-classical configurations we find that their relative probability semi-quantitatively agrees for both types of boundary conditions. We find calorons with unit topological charge as well as (anti-)selfdual lumps (BPS-monopoles or dyons) combined in pairs of non-integer (equal or opposite sign) topological charge. For calorons and separated pairs of equal-sign dyons obtained by cooling we have found that (i) the gluon field is well-described by Kraan-van Baal solutions of the Euclidean Yang-Mills field equations and (ii) the lowest Wilson-fermion modes are well-described by analytic solutions of the corresponding Dirac equation. For metastable configurations found at higher action, the multi-center structure can be interpreted in terms of dyons and antidyons, using the gluonic and fermionic indicators as in the dyon-pair case. Additionally, the Abelian monopole structure and field strength correlators between the centers are useful to analyse the configurations in terms of dyonic constituents. We argue that a semi-classical approximation of the non-zero temperature path integral should be built on superpositions of solutions with non-trivial holonomy.
The confinement scenario in Maximally Abelian gauge (MAG) is based on the concepts of Abelian dominance and of dual superconductivity. Recently, several groups pointed out the possible existence in MAG of ghost and gluon condensates with mass dimensi on 2, which in turn should influence the infrared behavior of ghost and gluon propagators. We present preliminary results for the first lattice numerical study of the ghost propagator and of ghost condensation for pure SU(2) theory in the MAG.
Lattice results for the gluon propagator in SU(2) pure gauge theory obtained on large lattices are presented. Simulated annealing is used throughout to fix the Landau gauge. We concentrate on checks for Gribov copy effects and for scaling properties. Our findings are similar to the ones in the SU(3) case, supporting the decoupling-type infrared behaviour of the gluon propagator.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا