ﻻ يوجد ملخص باللغة العربية
We study decomposition of $SU(2)$ gauge field into monopole and monopoleless components. After fixing the Maximal Abelian gauge in $SU(2)$ lattice gauge theory we decompose the nonabelian gauge field into the Abelian field created by monopoles and the modified nonabelian field with monopoles removed. We then calculate respective static potentialis and show that the potential due to the modified nonabelian field is nonconfining while, as is well known, the Abelian field produces linear potential. We further find that the sum of these potentials approximates the nonabelian static potential with good precision at all distances considered. We conclude that at large distances the monopole field potential describes the classical energy of the hadronic string while the static potential due to the modified nonabelian field describes the string fluctuations energy.
The effects of the Gribov copies on the gluon and ghost propagators are investigated in SU(2) Euclidean Yang-Mills theory quantized in the maximal Abelian gauge. By following Gribovs original approach, extended to the maximal Abelian gauge, we are ab
We investigate the Maximally Abelian (MA) Projection for a single $SU(2)$ instanton in continuum gauge theory. We find that there is a class of solutions to the differential MA gauge condition with circular monopole loops of radius $R$ centered on th
Finite temperature Euclidean SU(2) lattice gauge fields generated in the confinement phase close to the deconfinement phase transition are subjected to cooling. The aim is to identify long-living, almost-classical local excitations which carry (gener
The confinement scenario in Maximally Abelian gauge (MAG) is based on the concepts of Abelian dominance and of dual superconductivity. Recently, several groups pointed out the possible existence in MAG of ghost and gluon condensates with mass dimensi
Lattice results for the gluon propagator in SU(2) pure gauge theory obtained on large lattices are presented. Simulated annealing is used throughout to fix the Landau gauge. We concentrate on checks for Gribov copy effects and for scaling properties.