ﻻ يوجد ملخص باللغة العربية
The 3-D Z(3) Potts model is a model for finite temperature QCD with heavy quarks. The chemical potential in QCD becomes an external magnetic field in the Potts model. Following Alford et al.cite{Alford_et_al}, we revisit this mapping, and determine the phase diagram for an arbitrary chemical potential, real or imaginary. Analytic continuation of the phase transition line between real and imaginary chemical potential can be tested with precision. Our results show that the chemical potential weakens the heavy-quark deconfinement transition in QCD.
We extend our previous study of the QCD phase structure in the heavy quark region to non-zero chemical potentials. To identify the critical point where the first order deconfining transition terminates, we study an effective potential defined by the
We study the phase structure of lattice QCD with heavy quarks at finite temperature and density by a histogram method. We determine the location of the critical point at which the first-order deconfining transition in the heavy-quark limit turns into
We study the equation of state at finite temperature and density in two-flavor QCD with the RG-improved gluon action and the clover-improved Wilson quark action on a $ 16^3 times 4$ lattice. Along the lines of constant physics at $m_{rm PS}/m_{rm V}
We investigate chemical-potential ($mu$) dependence of the static-quark free energies in both the real and imaginary $mu$ regions, using the clover-improved two-flavor Wilson fermion action and the renormalization-group improved Iwasaki gauge action.
We apply the Linear Logarithmic Relaxation (LLR) method, which generalizes the Wang-Landau algorithm to quantum systems with continuous degrees of freedom, to the fermionic Hubbard model with repulsive interactions on the honeycomb lattice. We comput