ترغب بنشر مسار تعليمي؟ اضغط هنا

A density of states approach to the hexagonal Hubbard model at finite density

55   0   0.0 ( 0 )
 نشر من قبل Dominik Smith
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We apply the Linear Logarithmic Relaxation (LLR) method, which generalizes the Wang-Landau algorithm to quantum systems with continuous degrees of freedom, to the fermionic Hubbard model with repulsive interactions on the honeycomb lattice. We compute the generalized density of states of the average Hubbard field and divise two reconstruction schemes to extract physical observables from this result. By computing the particle density as a function of chemical potential we assess the utility of LLR in dealing with the sign problem of this model, which arises away from half filling. We show that the relative advantage over brute-force reweighting grows as the interaction strength is increased and discuss possible future improvements.



قيم البحث

اقرأ أيضاً

We study the phase diagram of the fermionic Hubbard model on the hexagonal lattice in the space of on-site and nearest neighbor couplings with Hybrid-Monte-Carlo simulations. With pure on-site repulsion this allows to determine the critical coupling strength for spin-density wave formation with the standard approach of introducing a small mass term, explicitly breaking the sublattice symmetry. The analogous mass term for charge-density wave formation above a critical nearest-neighbor repulsion, on the other hand, would introduce a fermion sign problem. The competition between the two and the phase diagram in the space of the two coouplings can however be studied in simulations without explicit sublattice symmetry breaking. Our results compare qualitatively well with the Hartree-Fock phase diagram. We furthermore demonstrate how spin-symmetry breaking by the Euclidean time discretization can be avoided also, when using an improved fermion action based on an exponetial transfer matrix with exact sublattice symmetry.
We show analytically that the spectral density of the $q$-body Sachdeev-Ye-Kitaev (SYK) model agrees with that of Q-Hermite polynomials with Q a non-trivial function of $q ge 2$ and the number of Majorana fermions $N gg 1$. Numerical results, obtaine d by exact diagonalization, are in excellent agreement with the analytical spectral density even for relatively small $N sim 8$. For $N gg 1$ and not close to the edge of the spectrum, we find the macroscopic spectral density simplifies to $rho(E) sim exp[2arcsin^2(E/E_0)/log eta]$, where $eta$ is the suppression factor of the contribution of intersecting Wick contractions relative to nested contractions. This spectral density reproduces the known result for the free energy in the large $q$ and $N$ limit. In the infrared region, where the SYK model is believed to have a gravity-dual, the spectral density is given by $rho(E) sim sinh[2pi sqrt 2 sqrt{(1-E/E_0)/(-log eta)}]$. It therefore has a square-root edge, as in random matrix ensembles, followed by an exponential growth, a distinctive feature of black holes and also of low energy nuclear excitations. Results for level-statistics in this region confirm the agreement with random matrix theory. Physically this is a signature that, for sufficiently long times, the SYK model and its gravity dual evolve to a fully ergodic state whose dynamics only depends on the global symmetry of the system. Our results strongly suggest that random matrix correlations are a universal feature of quantum black holes and that the SYK model, combined with holography, may be relevant to model certain aspects of the nuclear dynamics.
The canonical partition function is related to the grand canonical one through the fugacity expansion and is known to have no sign problem. In this paper we perform the fugacity expansion by a method of the hopping parameter expansion in temporal dir ection for the lattice QCD: winding number expansion. The canonical partition function is constructed for Nf=2 QCD starting from gauge configurations at zero chemical potential. After derivation of the canonical partition function we calculate hadronic observables like chiral condensate and quark number density and the pressure at the real chemical potential.
The massive Schwinger model is studied, using a density matrix renormalization group approach to the staggered lattice Hamiltonian version of the model. Lattice sizes up to 256 sites are calculated, and the estimates in the continuum limit are almost two orders of magnitude more accurate than previous calculations. Colemans picture of `half-asymptotic particles at background field (theta = pi) is confirmed. The predicted phase transition at finite fermion mass (m/g) is accurately located, and demonstrated to belong in the 2D Ising universality class.
The massive Schwinger model is studied, using a density matrix renormalisation group approach to the staggered lattice Hamiltonian version of the model. Lattice sizes up to 256 sites are calculated, and the estimates in the continuum limit are almost two orders of magnitude more accurate than previous calculations. Colemans picture of `half-asymptotic particles at background field theta = pi is confirmed. The predicted phase transition at finite fermion mass (m/g) is accurately located, and demonstrated to belong in the 2D Ising universality class.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا