ﻻ يوجد ملخص باللغة العربية
We study the sign problem in lattice field theory with a $theta$ term, which reveals as flattening phenomenon of the free energy density $f(theta)$. We report the result of the MEM analysis, where such mock data are used that `true flattening of $f(theta)$ occurs. This is regarded as a simple model for studying whether the MEM could correctly detect non trivial phase structure in $theta$ space. We discuss how the MEM distinguishes fictitious and true flattening.
We study the sign problem in lattice field theory with a $theta$ term. We apply the maximum entropy method (MEM) to flattening phenomenon of the free energy density $f(theta)$, which originates from the sign problem. In our previous paper, we applied
Lattice field theory with the $theta$ term suffers from the sign problem. The sign problem appears as flattening of the free energy. As an alternative to the conventional method, the Fourier transform method (FTM), we apply the maximum entropy me
The weak coupling region of CP$^{N-1}$ lattice field theory with the $theta$-term is investigated. Both the usual real theta method and the imaginary theta method are studied. The latter was first proposed by Bhanot and David. Azcoiti et al. proposed
The sign problem is notorious in Monte Carlo simulations of lattice QCD with the finite density, lattice field theory (LFT) with a $theta$ term and quantum spin models. In this report, to deal with the sign problem, we apply the maximum entropy met
In Monte Carlo simulations of lattice field theory with a $theta$ term, one confronts the complex weight problem, or the sign problem. This is circumvented by performing the Fourier transform of the topological charge distribution $P(Q)$. This proced