ﻻ يوجد ملخص باللغة العربية
The sign problem is notorious in Monte Carlo simulations of lattice QCD with the finite density, lattice field theory (LFT) with a $theta$ term and quantum spin models. In this report, to deal with the sign problem, we apply the maximum entropy method (MEM) to LFT with the $theta$ term and investigate to what extent the MEM is applicable to this issue. Based on this study, we also make a brief comment about lattice QCD with the finite density in terms of the MEM.
Lattice field theory with the $theta$ term suffers from the sign problem. The sign problem appears as flattening of the free energy. As an alternative to the conventional method, the Fourier transform method (FTM), we apply the maximum entropy me
Recently, we have proposed a novel approach (arxiv:1205.3996) to deal with the sign problem that hinders Monte Carlo simulations of many quantum field theories (QFTs). The approach consists in formulating the QFT on a Lefschetz thimble. In this paper
The unquenched spectral density of the Dirac operator at $mu eq0$ is complex and has oscillations with a period inversely proportional to the volume and an amplitude that grows exponentially with the volume. Here we show how the oscillations lead to the discontinuity of the chiral condensate.
This an English translation of a review of finite-density lattice QCD. The original version in Japanese appeared in Soryushiron Kenkyu Vol 31 (2020) No. 1.
As an effective model corresponding to $Z_3$-symmetric QCD ($Z_3$-QCD), we construct a $Z_3$-symmetric effective Polyakov-line model ($Z_3$-EPLM) by using the logarithmic fermion effective action. Since $Z_3$-QCD tends to QCD in the zero temperature