ﻻ يوجد ملخص باللغة العربية
Domain wall fermions are a new lattice fermion formulation which preserves the full chiral symmetry of the continuum at finite lattice spacing, up to terms exponentially small in an extra parameter. We discuss the main features of the formulation and its application to study of QCD with two light fermions of equal mass. We also present numerical studies of the two flavor QCD thermodynamics with aT = 1/4.
We compute the topological susceptibility $chi_t$ of lattice QCD with $2+1$ dynamical quark flavors described by the Mobius domain wall fermion. Violation of chiral symmetry as measured by the residual mass is kept at $sim$1 MeV or smaller. We measur
We present a quenched lattice calculation of the weak nucleon form factors: vector (F_V(q^2)), induced tensor (F_T(q^2)), axial-vector (F_A(q^2)) and induced pseudo-scalar (F_P(q^2)) form factors. Our simulations are performed on three different latt
We present a quenched lattice calculation of the nucleon isovector vector and axial-vector charges gV and gA. The chiral symmetry of domain wall fermions makes the calculation of the nucleon axial charge particularly easy since the Ward-Takahashi ide
Quenched QCD simulations on three volumes, $8^3 times$, $12^3 times$ and $16^3 times 32$ and three couplings, $beta=5.7$, 5.85 and 6.0 using domain wall fermions provide a consistent picture of quenched QCD. We demonstrate that the small induced effe
We have computed the SU(2) Low Energy Constant l5 and the mass splitting between charged and neutral pions from a lattice QCD simulation of nf = 2 + 1 flavors of Domain Wall Fermions at a scale of a-1 = 2.33GeV. Relating l5 to the S parameter in QCD