ترغب بنشر مسار تعليمي؟ اضغط هنا

Finite Temperature QCD with Domain Wall Fermions

46   0   0.0 ( 0 )
 نشر من قبل George T. Fleming
 تاريخ النشر 2004
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Domain wall fermions are a new lattice fermion formulation which preserves the full chiral symmetry of the continuum at finite lattice spacing, up to terms exponentially small in an extra parameter. We discuss the main features of the formulation and its application to study of QCD with two light fermions of equal mass. We also present numerical studies of the two flavor QCD thermodynamics with aT = 1/4.

قيم البحث

اقرأ أيضاً

76 - S. Aoki , G. Cossu , H. Fukaya 2017
We compute the topological susceptibility $chi_t$ of lattice QCD with $2+1$ dynamical quark flavors described by the Mobius domain wall fermion. Violation of chiral symmetry as measured by the residual mass is kept at $sim$1 MeV or smaller. We measur e the fluctuation of the topological charge density in a `slab sub-volume of the simulated lattice using the method proposed by Bietenholz {it et al.} The quark mass dependence of $chi_t$ is consistent with the prediction of chiral perturbation theory, from which the chiral condensate is extracted as $Sigma^{overline{rm MS}} (mbox{2GeV}) = [274(13)(29)mbox{MeV}]^3$, where the first error is statistical and the second one is systematic. Combining the results for the pion mass $M_pi$ and decay constant $F_pi$, we obtain $chi_t = 0.229(03)(13)M_pi^2F_pi^2$ at the physical point.
423 - Shoichi Sasaki 2009
We present a quenched lattice calculation of the weak nucleon form factors: vector (F_V(q^2)), induced tensor (F_T(q^2)), axial-vector (F_A(q^2)) and induced pseudo-scalar (F_P(q^2)) form factors. Our simulations are performed on three different latt ice sizes L^3 x T=24^3 x 32, 16^3 x 32 and 12^3 x 32 with a lattice cutoff of 1/a = 1.3 GeV and light quark masses down to about 1/4 the strange quark mass (m_{pi} = 390 MeV) using a combination of the DBW2 gauge action and domain wall fermions. The physical volume of our largest lattice is about (3.6 fm)^3, where the finite volume effects on form factors become negligible and the lower momentum transfers (q^2 = 0.1 GeV^2) are accessible. The q^2-dependences of form factors in the low q^2 region are examined. It is found that the vector, induced tensor, axial-vector form factors are well described by the dipole form, while the induced pseudo-scalar form factor is consistent with pion-pole dominance. We obtain the ratio of axial to vector coupling g_A/g_V=F_A(0)/F_V(0)=1.219(38) and the pseudo-scalar coupling g_P=m_{mu}F_P(0.88m_{mu}^2)=8.15(54), where the errors are statistical erros only. These values agree with experimental values from neutron beta decay and muon capture on the proton. However, the root mean squared radii of the vector, induced tensor and axial-vector underestimate the known experimental values by about 20%. We also calculate the pseudo-scalar nucleon matrix element in order to verify the axial Ward-Takahashi identity in terms of the nucleon matrix elements, which may be called as the generalized Goldberger-Treiman relation.
We present a quenched lattice calculation of the nucleon isovector vector and axial-vector charges gV and gA. The chiral symmetry of domain wall fermions makes the calculation of the nucleon axial charge particularly easy since the Ward-Takahashi ide ntity requires the vector and axial-vector currents to have the same renormalization, up to lattice spacing errors of order O(a^2). The DBW2 gauge action provides enhancement of the good chiral symmetry properties of domain wall fermions at larger lattice spacing than the conventional Wilson gauge action. Taking advantage of these methods and performing a high statistics simulation, we find a significant finite volume effect between the nucleon axial charges calculated on lattices with (1.2 fm)^3 and (2.4 fm)^3 volumes (with lattice spacing, a, of about 0.15 fm). On the large volume we find gA = 1.212 +/- 0.027(statistical error) +/- 0.024(normalization error). The quoted systematic error is the dominant (known) one, corresponding to current renormalization. We discuss other possible remaining sources of error. This theoretical first principles calculation, which does not yet include isospin breaking effects, yields a value of gA only a little bit below the experimental one, 1.2670 +/- 0.0030.
61 - T. Blum , P. Chen , N. Christ 2000
Quenched QCD simulations on three volumes, $8^3 times$, $12^3 times$ and $16^3 times 32$ and three couplings, $beta=5.7$, 5.85 and 6.0 using domain wall fermions provide a consistent picture of quenched QCD. We demonstrate that the small induced effe cts of chiral symmetry breaking inherent in this formulation can be described by a residual mass ($mres$) whose size decreases as the separation between the domain walls ($L_s$) is increased. However, at stronger couplings much larger values of $L_s$ are required to achieve a given physical value of $mres$. For $beta=6.0$ and $L_s=16$, we find $mres/m_s=0.033(3)$, while for $beta=5.7$, and $L_s=48$, $mres/m_s=0.074(5)$, where $m_s$ is the strange quark mass. These values are significantly smaller than those obtained from a more naive determination in our earlier studies. Important effects of topological near zero modes which should afflict an accurate quenched calculation are easily visible in both the chiral condensate and the pion propagator. These effects can be controlled by working at an appropriately large volume. A non-linear behavior of $m_pi^2$ in the limit of small quark mass suggests the presence of additional infrared subtlety in the quenched approximation. Good scaling is seen both in masses and in $f_pi$ over our entire range, with inverse lattice spacing varying between 1 and 2 GeV.
We have computed the SU(2) Low Energy Constant l5 and the mass splitting between charged and neutral pions from a lattice QCD simulation of nf = 2 + 1 flavors of Domain Wall Fermions at a scale of a-1 = 2.33GeV. Relating l5 to the S parameter in QCD we obtain a value of S(mH=120GeV) = 0.42(7), in agreement with previous determinations. Our result can be compared with the value of S from electroweak precision data which constrains strongly interacting models of new physics like Technicolor. This work in QCD serves as a test for the methods to compute the S parameter with Domain Wall Fermions in theories beyond the Standard Model. We also infer a value for the pion mass splitting in agreement with experiment.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا