ترغب بنشر مسار تعليمي؟ اضغط هنا

Nucleon axial charge from quenched lattice QCD with domain wall fermions

90   0   0.0 ( 0 )
 نشر من قبل Shigemi Ohta
 تاريخ النشر 2003
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a quenched lattice calculation of the nucleon isovector vector and axial-vector charges gV and gA. The chiral symmetry of domain wall fermions makes the calculation of the nucleon axial charge particularly easy since the Ward-Takahashi identity requires the vector and axial-vector currents to have the same renormalization, up to lattice spacing errors of order O(a^2). The DBW2 gauge action provides enhancement of the good chiral symmetry properties of domain wall fermions at larger lattice spacing than the conventional Wilson gauge action. Taking advantage of these methods and performing a high statistics simulation, we find a significant finite volume effect between the nucleon axial charges calculated on lattices with (1.2 fm)^3 and (2.4 fm)^3 volumes (with lattice spacing, a, of about 0.15 fm). On the large volume we find gA = 1.212 +/- 0.027(statistical error) +/- 0.024(normalization error). The quoted systematic error is the dominant (known) one, corresponding to current renormalization. We discuss other possible remaining sources of error. This theoretical first principles calculation, which does not yet include isospin breaking effects, yields a value of gA only a little bit below the experimental one, 1.2670 +/- 0.0030.



قيم البحث

اقرأ أيضاً

556 - Shoichi Sasaki 2009
We present a quenched lattice calculation of the weak nucleon form factors: vector (F_V(q^2)), induced tensor (F_T(q^2)), axial-vector (F_A(q^2)) and induced pseudo-scalar (F_P(q^2)) form factors. Our simulations are performed on three different latt ice sizes L^3 x T=24^3 x 32, 16^3 x 32 and 12^3 x 32 with a lattice cutoff of 1/a = 1.3 GeV and light quark masses down to about 1/4 the strange quark mass (m_{pi} = 390 MeV) using a combination of the DBW2 gauge action and domain wall fermions. The physical volume of our largest lattice is about (3.6 fm)^3, where the finite volume effects on form factors become negligible and the lower momentum transfers (q^2 = 0.1 GeV^2) are accessible. The q^2-dependences of form factors in the low q^2 region are examined. It is found that the vector, induced tensor, axial-vector form factors are well described by the dipole form, while the induced pseudo-scalar form factor is consistent with pion-pole dominance. We obtain the ratio of axial to vector coupling g_A/g_V=F_A(0)/F_V(0)=1.219(38) and the pseudo-scalar coupling g_P=m_{mu}F_P(0.88m_{mu}^2)=8.15(54), where the errors are statistical erros only. These values agree with experimental values from neutron beta decay and muon capture on the proton. However, the root mean squared radii of the vector, induced tensor and axial-vector underestimate the known experimental values by about 20%. We also calculate the pseudo-scalar nucleon matrix element in order to verify the axial Ward-Takahashi identity in terms of the nucleon matrix elements, which may be called as the generalized Goldberger-Treiman relation.
176 - T. Yamazaki , Y. Aoki , T. Blum 2008
We present results for the nucleon axial charge g_A at a fixed lattice spacing of 1/a=1.73(3) GeV using 2+1 flavors of domain wall fermions on size 16^3x32 and 24^3x64lattices (L=1.8 and 2.7 fm) with length 16 in the fifth dimension. The length of th e Monte Carlo trajectory at the lightest m_pi is 7360 units, including 900 for thermalization. We find finite volume effects are larger than the pion mass dependence at m_pi= 330 MeV. We also find that g_A exhibits a scaling with the single variable m_pi L which can also be seen in previous two-flavor domain wall and Wilson fermion calculati ons. Using this scaling to eliminate the finite-volume effect, we obtain g_A = 1.20(6)(4) at the physical pion mass, m_pi = 135 MeV, where the first and second errors are statistical and systematic. The observed finite-volume scaling also appears in similar quenched simulations, but disappear when Vge (2.4 fm)^3. We argue this is a dynamical quark effect.
91 - Shigemi Ohta KEK 2018
Nucleon isovector vector, $g_V$, and axialvector, $g_A$, charges calculated on a 2+1-flavor dynamical domain-wall-fermions (DWF) ensemble at physical mass jointly generated by RIKEN-BNL-Columbia (RBC) and UKQCD Collaborations with lattice cut off of 1.730(4) GeV, are reported with about a percent statistical errors, along with isovector ``scalar, $g_S$, and ``tensor charges, $g_T$, with larger statistical errors. Nucleon mass is estimated as 947(6) MeV. A few standard-deviation systematics is seen in the vector charge, likely from $O(a^2)$ discretization error through small excited-state contamination. The axialvector charge is found with a few to several standard-deviation systematic deficit, depending on calculation methods, in comparison with the experiment. Nucleon signal is likely lost as early as 10 lattice units or about 1.1 fm in time from the source.
We report on our calculation of the nucleon axial charge gA in QCD with two flavours of dynamical quarks. A detailed investigation of systematic errors is performed, with a particular focus on contributions from excited states to three-point correlat ion functions. The use of summed operator insertions allows for a much better control over such contamination. After performing a chiral extrapolation to the physical pion mass, we find gA=1.223 +/- 0.063 (stat) +0.035 -0.060 (syst), in good agreement with the experimental value.
61 - T. Blum , P. Chen , N. Christ 2000
Quenched QCD simulations on three volumes, $8^3 times$, $12^3 times$ and $16^3 times 32$ and three couplings, $beta=5.7$, 5.85 and 6.0 using domain wall fermions provide a consistent picture of quenched QCD. We demonstrate that the small induced effe cts of chiral symmetry breaking inherent in this formulation can be described by a residual mass ($mres$) whose size decreases as the separation between the domain walls ($L_s$) is increased. However, at stronger couplings much larger values of $L_s$ are required to achieve a given physical value of $mres$. For $beta=6.0$ and $L_s=16$, we find $mres/m_s=0.033(3)$, while for $beta=5.7$, and $L_s=48$, $mres/m_s=0.074(5)$, where $m_s$ is the strange quark mass. These values are significantly smaller than those obtained from a more naive determination in our earlier studies. Important effects of topological near zero modes which should afflict an accurate quenched calculation are easily visible in both the chiral condensate and the pion propagator. These effects can be controlled by working at an appropriately large volume. A non-linear behavior of $m_pi^2$ in the limit of small quark mass suggests the presence of additional infrared subtlety in the quenched approximation. Good scaling is seen both in masses and in $f_pi$ over our entire range, with inverse lattice spacing varying between 1 and 2 GeV.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا