ﻻ يوجد ملخص باللغة العربية
We present the first set of quenched QCD measurements using the recently parametrized fixed-point Dirac operator D^FP. We also give a general and practical construction of covariant densities and conserved currents for chiral lattice actions. The measurements include (a) hadron spectroscopy, (b) corrections of small chiral deviations, (c) the renormalized quark condensate from finite-size scaling and, independently, spectroscopy, (d) the topological susceptibility, (e) small eigenvalue distributions and random matrix theory, and (f) local chirality of near-zero modes and instanton-dominance.
In this preliminary study, we examine the chiral properties of the parametrized Fixed-Point Dirac operator D^FP, see how to improve its chirality via the Overlap construction, measure the renormalized quark condensate Sigma and the topological suscep
We have constructed a new fermion action which is an approximation to the (chirally symmetric) Fixed-Point action, containing the full Clifford algebra with couplings inside a hypercube and paths built from renormalization group inspired fat links. W
We report on the pion-pion scattering length in the I=2 channel using the parametrized fixed point action. Pion masses of 320 MeV were reached in this quenched calculation of the scattering length.
The topological charge distribution P(Q) is calculated for lattice ${rm CP}^{N-1}$ models. In order to suppress lattice cut-off effects we employ a fixed point (FP) action. Through transformation of P(Q) we calculate the free energy $F(theta)$ as a f
We study lattice QCD with a gauge action, which suppresses small plaquette values. Thus the MC history is confined to a single topological sector over a significant time, while other observables are decorrelated. This enables the cumulation of statis