ﻻ يوجد ملخص باللغة العربية
Borexino is a massive calorimetric liquid scintillation detector whose installation has been completed in the underground Gran Sasso Laboratory. The focus of the experiment is on the direct and real time measurement of the flux of neutrinos produced in the $^{7}Be$ electron capture reaction in the Sun. Furthermore, recent studies about the reduction of the $^{11}C$ background through suitable rejection techniques demonstrated the possibility to open an interesting additional observation window in the energy region of the pep and CNO solar neutrinos. Beyond the solar neutrino program, the detector will be also a powerful observatory for antineutrinos from Supernovae, as well as for geoneutrinos, profiting from a very low background from nuclear reactors.
This paper describes the Borexino detector and the high-radiopurity studies and tests that are integral part of the Borexino technology and development. The application of Borexino to the detection and studies of geoneutrinos is discussed.
This paper presents a geoneutrino measurement using 3262.74 days of data taken with the Borexino detector at LNGS in Italy. By observing $52.6 ^{+9.4}_{-8.6} ({rm stat}) ^{+2.7}_{-2.1}({rm sys})$ geoneutrinos (68% interval) from $^{238}$U and $^{232}
Borexino is a large-volume liquid scintillator detector installed in the underground halls of the Laboratori Nazionali del Gran Sasso in Italy. After several years of construction, data taking started in May 2007. The Borexino phase I ended after abo
The main physical results on the registration of solar neutrinos and the search for rare processes obtained by the Borexino collaboration to date are presented.
Neutrinos are elementary particles which are known since many years as fundamental messengers from the interior of the Sun. The Standard Solar Model, which gives a theoretical description of all nuclear processes which happen in our star, predicts th