ﻻ يوجد ملخص باللغة العربية
This report is intended to describe first, the principal physics reasons for an ambitious experimental program in neutrino physics and proton decay based on construction of a series of massive water Cherenkov detectors located deep underground (4850 ft) in the Homestake Mine of the South Dakota Science and Technology Authority (SDSTA); and second, the engineering design of the underground chambers to house the Cherenkov detector modules; and third, the conceptual design of the water Cherenkov detectors themselves for this purpose. Included in this document are preliminary costs and time-to-completion estimates which have been exposed to acknowledged experts in their respective areas. We have included some contingency factors. Nevertheless, we recognize that much more extensive documentation and contingency estimates will be needed for a full technical design report. In this proposal we show the event rates and physics sensitivity for beams from both FNAL (1300 km distant from Homestake) and BNL (2540 km distant from Homestake). The program we propose will benefit from a beam from FNAL because of the high intensities currently available from the Main Injector with modest upgrades. The possibility of tuning the primary proton energy over a large range from 30 to 120 GeV also adds considerable flexibility to the program from FNAL.
This is a preliminary version of a formal proposal by the 3M collaboration to construct a megaton, modular, multipurpose (3M) neutrino detector for a program of experiments in neutrino physics. The detector components will be located in chambers appr
A possibility to accelerate a high intensity polarized proton beam up to 70 GeV at the IHEP accelerator, extract it from the main ring and deliver to several experimental setups is being studied now. We propose to study a wealth of single- and double
Its been a remarkable decade in neutrino physics. Ten years ago this summer, at the 1998 neutrino conference in Takayama, the Super-Kamiokande collaboration reported the observation of neutrinos changing flavor, thereby establishing the existence of
Deep underground in Kolar Gold Fields, in southern India, an experiment to detect proton decay had been carried out since the end of 1980. Analysis of data yielded the following results; (l) the life time of proton is about 1 x 1031 years, (2) it dec
This article reviews the research program and efforts for the TEXONO Collaboration on neutrino and astro-particle physics. The ``flagship program is on reactor-based neutrino physics at the Kuo-Sheng (KS) Power Plant in Taiwan. A limit on the neutrin