ترغب بنشر مسار تعليمي؟ اضغط هنا

Proposal for an Experimental Program in Neutrino Physics and Proton Decay in the Homestake Laboratory

416   0   0.0 ( 0 )
 نشر من قبل Milind Vaman Diwan
 تاريخ النشر 2006
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

This report is intended to describe first, the principal physics reasons for an ambitious experimental program in neutrino physics and proton decay based on construction of a series of massive water Cherenkov detectors located deep underground (4850 ft) in the Homestake Mine of the South Dakota Science and Technology Authority (SDSTA); and second, the engineering design of the underground chambers to house the Cherenkov detector modules; and third, the conceptual design of the water Cherenkov detectors themselves for this purpose. Included in this document are preliminary costs and time-to-completion estimates which have been exposed to acknowledged experts in their respective areas. We have included some contingency factors. Nevertheless, we recognize that much more extensive documentation and contingency estimates will be needed for a full technical design report. In this proposal we show the event rates and physics sensitivity for beams from both FNAL (1300 km distant from Homestake) and BNL (2540 km distant from Homestake). The program we propose will benefit from a beam from FNAL because of the high intensities currently available from the Main Injector with modest upgrades. The possibility of tuning the primary proton energy over a large range from 30 to 120 GeV also adds considerable flexibility to the program from FNAL.

قيم البحث

اقرأ أيضاً

This is a preliminary version of a formal proposal by the 3M collaboration to construct a megaton, modular, multipurpose (3M) neutrino detector for a program of experiments in neutrino physics. The detector components will be located in chambers appr oximately 7000 ft below the Earths surface in the Homestake Mine at Lead, South Dakota, to carry out experiments on neutrino oscillations directed toward the principal experimental goal of the program, viz., the issue of CP-invariance violation in the lepton sector of elementary particles, an issue that has been the subject of study in the quark sector for several decades. The principal physics goal of this program also requires a moderately intense neutrino beam from an accelerator located a long distance from the detector array, such as the 2540 km distance of BNL from Homestake. The construction plan for that neutrino beam is at http://nwg.phy.bnl.gov/. Other experimental searches that do not require the accelerator-generated beam can be carried out with the 3M detector independently of and at the same time as the neutrino oscillation and CP-invariance violation measurements are in progress. They are searches for Proton Decay, UHE Neutrinos, and Supernovae Neutrinos.
A possibility to accelerate a high intensity polarized proton beam up to 70 GeV at the IHEP accelerator, extract it from the main ring and deliver to several experimental setups is being studied now. We propose to study a wealth of single- and double -spin observables in various reactions using longitudinally and transverserly polarized proton beams at U70. The proposed measurements can be done at the existing detectors as well as require to create a few new experimental setups at U70.
Its been a remarkable decade in neutrino physics. Ten years ago this summer, at the 1998 neutrino conference in Takayama, the Super-Kamiokande collaboration reported the observation of neutrinos changing flavor, thereby establishing the existence of neutrino mass. A few years later, the SNO experiment solved the long-standing solar neutrino problem demonstrating that it too was due to neutrino oscillation. Just a few years after that, these effects were confirmed and the oscillation parameters were measured with man-made neutrino sources. Now, just in this last year, the same neutrinos which were the source of the 30 year old solar neutrino problem were measured for the first time in a real-time experiment. In this talk, I will explain how a set of experiments, especially ones in the last few years, have established a consistent framework of neutrino physics and also explain some outstanding questions. Finally, I will cover how a set of upcoming experiments hope to address these questions in the coming decade.
174 - H.Adarkar 2000
Deep underground in Kolar Gold Fields, in southern India, an experiment to detect proton decay had been carried out since the end of 1980. Analysis of data yielded the following results; (l) the life time of proton is about 1 x 1031 years, (2) it dec ays into wide spectrum of decay modes, p -> e+ + pai0, p ->anti-nutrino + K+ and so on, and (3) the life time and the distribution of decay modes are close to the predictions of SU(5) SUSY GUT. Four events representing possibly neutron oscillation are also seen.
81 - H.T. Wong , J. Li , Z.Y. Zhou 2003
This article reviews the research program and efforts for the TEXONO Collaboration on neutrino and astro-particle physics. The ``flagship program is on reactor-based neutrino physics at the Kuo-Sheng (KS) Power Plant in Taiwan. A limit on the neutrin o magnetic moment of $munuebar < 1.3 X 10^{-10} mub}$ at 90% confidence level was derived from measurements with a high purity germanium detector. Other physics topics at KS, as well as the various R&D program, are discussed
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا