ﻻ يوجد ملخص باللغة العربية
Its been a remarkable decade in neutrino physics. Ten years ago this summer, at the 1998 neutrino conference in Takayama, the Super-Kamiokande collaboration reported the observation of neutrinos changing flavor, thereby establishing the existence of neutrino mass. A few years later, the SNO experiment solved the long-standing solar neutrino problem demonstrating that it too was due to neutrino oscillation. Just a few years after that, these effects were confirmed and the oscillation parameters were measured with man-made neutrino sources. Now, just in this last year, the same neutrinos which were the source of the 30 year old solar neutrino problem were measured for the first time in a real-time experiment. In this talk, I will explain how a set of experiments, especially ones in the last few years, have established a consistent framework of neutrino physics and also explain some outstanding questions. Finally, I will cover how a set of upcoming experiments hope to address these questions in the coming decade.
Neutrino telescopes can observe neutrino interactions starting at GeV energies by sampling a small fraction of the Cherenkov radiation produced by charged secondary particles. These experiments instrument volumes massive enough to collect substantial
This report is intended to describe first, the principal physics reasons for an ambitious experimental program in neutrino physics and proton decay based on construction of a series of massive water Cherenkov detectors located deep underground (4850
The phenomenon of neutrino oscillation has been firmly established: neutrinos change their flavor in their path from their source to observers. This paper is dedicated to the description of experimental results in the oscillation field, of their pres
$R$-parity violating supersymmetric models (RPV SUSY) are becoming increasingly more appealing than its $R$-parity conserving counterpart in view of the hitherto non-observation of SUSY signals at the LHC. In this paper, we discuss RPV scenarios wher
We review the results of solar neutrino physics, with particular attention to the data obtained and the analyses performed in the last decades, which were determinant to solve the solar neutrino problem (SNP), proving that neutrinos are massive and o