ترغب بنشر مسار تعليمي؟ اضغط هنا

Beam Test of BTeV Pixel Detectors

120   0   0.0 ( 0 )
 نشر من قبل Jianchun Wang
 تاريخ النشر 2000
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The silicon pixel vertex detector is one of the key elements of the BTeV spectrometer. Detector prototypes were tested in a beam at Fermilab. We report here on the measured spatial resolution as a function of the incident angles for different sensor-readout electronics combinations. We compare the results with predictions from our Monte Carlo simulation.

قيم البحث

اقرأ أيضاً

The silicon pixel vertex detector is a key element of the BTeV spectrometer. Sensors bump-bonded to prototype front-end devices were tested in a high energy pion beam at Fermilab. The spatial resolution and occupancies as a function of the pion incid ent angle were measured for various sensor-readout combinations. The data are compared with predictions from our Monte Carlo simulation and very good agreement is found.
We report on measurements performed on silicon pixel sensor prototypes exposed to a 200 MeV proton beam at the Indiana University Cyclotron Facility. The sensors are of n+/n/p+ type with multi-guard ring structures on the p+-side and p-stop electrode isolation on the n+-side. Electrical characterization of the devices was performed before and after irradiation up to a proton fluence of 4E14 p/cm2. We tested pixel sensors fabricated from normal and oxygen-enriched silicon wafers and with two different p-stop isolation layouts: common p-stop and individual p-stop.
50 - Qiang Li 2007
The Modified Horizontal Bridgman (MHB) process produces Cadmium Zinc Telluride (CZT) crystals with high yield and excellent homogeneity. Various groups,including our own, previously reported on the test of 2x2x0.5 cm3 MHB CZT detectors grown by the c ompany Orbotech and read out with 8x8 pixels. In this contribution, we describe the optimization of the photolithographic process used for contacting the CZT detector with pixel contacts. The optimized process gives a high yield of good pixels down to pixel diameters/pitches of 50 microns. Furthermore, we discuss the performance of 0.5 cm and 0.75 cm thick detectors contacted with 64 and 225 pixel read out with the RENA-3 ASICs from the company NOVA R&D.
The physics goals at the future e+e- linear collider require high performance vertexing and impact parameter resolution. Two possible technologies for the vertex detector of an experimental apparatus are outlined in the paper: an evolution of the Hyb rid Pixel Sensors already used in high energy physics experiments and a new detector concept based on the monolithic CMOS sensors.
Results on beam tests of 3D silicon pixel sensors aimed at the ATLAS Insertable-B-Layer and High Luminosity LHC (HL-LHC)) upgrades are presented. Measurements include charge collection, tracking efficiency and charge sharing between pixel cells, as a function of track incident angle, and were performed with and without a 1.6 T magnetic field oriented as the ATLAS Inner Detector solenoid field. Sensors were bump bonded to the front-end chip currently used in the ATLAS pixel detector. Full 3D sensors, with electrodes penetrating through the entire wafer thickness and active edge, and double-sided 3D sensors with partially overlapping bias and read-out electrodes were tested and showed comparable performance.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا