ﻻ يوجد ملخص باللغة العربية
An open system is not conservative because energy can escape to the outside. An open system by itself is thus not conservative. As a result, the time-evolution operator is not hermitian in the usual sense and the eigenfunctions (factorized solutions in space and time) are no longer normal modes but quasinormal modes (QNMs) whose frequencies $omega$ are complex. QNM analysis has been a powerful tool for investigating open systems. Previous studies have been mostly system specific, and use a few QNMs to provide approximate descriptions. Here we review recent developments which aim at a unifying treatment. The formulation leads to a mathematical structure in close analogy to that in conservative, hermitian systems. Many of the mathematical tools for the latter can hence be transcribed. Emphasis is placed on those cases in which the QNMs form a complete set for outgoing wavefunctions, so that in principle all the QNMs together give an exact description of the dynamics. Applications to optics in microspheres and to gravitational waves from black holes are reviewed, and directions for further development are outlined.
We prove an uncertainty principle for certain eigenfunction expansions on $ L^2(mathbb{R}^+,w(r)dr) $ and use it to prove analogues of theorems of Chernoff and Ingham for Laplace-Beltrami operators on compact symmetric spaces, special Hermite operato
In this work we introduce a reduced-rank algorithm for Gaussian process regression. Our numerical scheme converts a Gaussian process on a user-specified interval to its Karhunen-Lo`eve expansion, the $L^2$-optimal reduced-rank representation. Numeric
Gravitational waves at suitable frequencies can resonantly interact with a binary system, inducing changes to its orbit. A stochastic gravitational-wave background causes the orbital elements of the binary to execute a classic random walk, with the v
In this paper we analyse the structure of the spaces of smooth type functions, generated by elements of arbitrary Hilbert spaces, as a continuation of the research in our previous papers in this series. We prove that these spaces are perfect sequence
Ehlers-Kundt conjecture is a physical assertion about the fundamental role of plane waves for the description of gravitational waves. Mathematically, it becomes equivalent to a problem on the Euclidean plane ${mathbb R}^2$ with a very simple formulat