ﻻ يوجد ملخص باللغة العربية
Ehlers-Kundt conjecture is a physical assertion about the fundamental role of plane waves for the description of gravitational waves. Mathematically, it becomes equivalent to a problem on the Euclidean plane ${mathbb R}^2$ with a very simple formulation in Classical Mechanics: given a non-necessarily autonomous potential $V(z,u)$, $(z,u)in {mathbb R}^2times {mathbb R}$, harmonic in $z$ (i.e. source-free), the trajectories of its associated dynamical system $ddot{z}(s)=- abla_z V(z(s),s)$ are complete (they live eternally) if and only if $V(z,u)$ is a polynomial in $z$ of degree at most $2$ (so that $V$ is a standard mathematical idealization of vacuum). Here, the conjecture is solved in the significative case that $V$ is bounded polynomially in $z$ for finite values of $uin {mathbb R}$. The mathematical and physical implications of this {em polynomial EK conjecture}, as well as the non-polynomial one, are discussed beyond their original scope.
We present the complete family of space-times with a non-expanding, shear-free, twist-free, geodesic principal null congruence (Kundt waves) that are of algebraic type III and for which the cosmological constant ($Lambda_c$) is non-zero. The possible
A pseudo-Riemannian manifold is called CSI if all scalar polynomial invariants constructed from the curvature tensor and its covariant derivatives are constant. In the Lorentzian case, the CSI spacetimes have been studied extensively due to their app
According to General Relativity gravity is the result of the interaction between matter and space-time geometry. In this interaction space-time geometry itself is dynamical: it can store and transport energy and momentum in the form of gravitational
This decade will see the first direct detections of gravitational waves by observatories such as Advanced LIGO and Virgo. Among the prime sources are coalescences of binary neutron stars and black holes, which are ideal probes of dynamical spacetime.
The energy content of cylindrical gravitational wave spacetimes is analyzed by considering two local descriptions of energy associated with the gravitational field, namely those based on the C-energy and the Bel-Robinson super-energy tensor. A Poynti