ﻻ يوجد ملخص باللغة العربية
A discussion is presented of the principle of black hole com- plementarity. It is argued that this principle could be viewed as a breakdown of general relativity, or alternatively, as the introduction of a time variable with multiple `sheets or `branches A consequence of the theory is that the stress-energy tensor as viewed by an outside observer is not simply the Lorentz-transform of the tensor viewed by an ingoing observer. This can serve as a justification of a new model for the black hole atmosphere, recently re-introduced. It is discussed how such a model may lead to a dynamical description of the black hole quantum states.
The non-rotating BTZ solution is expressed in terms of coordinates that allow for an arbitrary time-dependent scale factor in the boundary metric. We provide explicit expressions for the coordinate transformation that generates this form of the metri
Causal concept for the general black hole shadow is investigated, instead of the photon sphere. We define several `wandering null geodesics as complete null geodesics accompanied by repetitive conjugate points, which would correspond to null geodesic
There is growing notion that black holes may not contain curvature singularities (and that indeed nature in general may abhor such spacetime defects). This notion could have implications on our understanding of the evolution of primordial black holes
We consider dynamics of a quantum scalar field, minimally coupled to classical gravity, in the near-horizon region of a Schwarzschild black-hole. It is described by a static Klein-Gordon operator which in the near-horizon region reduces to a scale in
For the first time, we obtain the analytical form of black hole space-time metric in dark matter halo for the stationary situation. Using the relation between the rotation velocity (in the equatorial plane) and the spherical symmetric space-time metr