ترغب بنشر مسار تعليمي؟ اضغط هنا

The 4-Body Problem in a (1+1)-Dimensional Self-Gravitating System

135   0   0.0 ( 0 )
 نشر من قبل Robert Mann
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on the results of a study of the motion of a four particle non-relativistic one-dimensional self-gravitating system. We show that the system can be visualized in terms of a single particle moving within a potential whose equipotential surfaces are shaped like a box of pyramid-shaped sides. As such this is the largest $N$-body system that can be visualized in this way. We describe how to classify possible states of motion in terms of Braid Group operators, generalizing this to $N$ bodies. We find that the structure of the phasetextcolor{black}{{} space of each of these systems yields a large variety of interesting dynamics, containing regions of quasiperiodicity and chaos. Lyapunov exponents are calculated for many trajectories to measure stochasticity and previously unseen phenomena in the Lyapunov graphs are observed.



قيم البحث

اقرأ أيضاً

We consider a test of the Copernican Principle through observations of the large-scale structures, and for this purpose we study the self-gravitating system in a relativistic huge void universe model which does not invoke the Copernican Principle. If we focus on the the weakly self-gravitating and slowly evolving system whose spatial extent is much smaller than the scale of the cosmological horizon in the homogeneous and isotropic background universe model, the cosmological Newtonian approximation is available. Also in the huge void universe model, the same kind of approximation as the cosmological Newtonian approximation is available for the analysis of the perturbations contained in a region whose spatial size is much smaller than the scale of the huge void: the effects of the huge void are taken into account in a perturbative manner by using the Fermi-normal coordinates. By using this approximation, we derive the equations of motion for the weakly self-gravitating perturbations whose elements have relative velocities much smaller than the speed of light, and show the derived equations can be significantly different from those in the homogeneous and isotropic universe model, due to the anisotropic volume expansion in the huge void. We linearize the derived equations of motion and solve them. The solutions show that the behaviors of linear density perturbations are very different from those in the homogeneous and isotropic universe model.
We derive the non-relativistic limit of a massive vector field. We show that the Cartesian spatial components of the vector behave as three identical, non-interacting scalar fields. We find classes of spherical, cylindrical, and planar self-gravitati ng vector solitons in the Newtonian limit. The gravitational properties of the lowest-energy vector solitons$mathrm{-}$the gravitational potential and density field$mathrm{-}$depend only on the net mass of the soliton and the vector particle mass. In particular, these self-gravitating, ground-state vector solitons are independent of the distribution of energy across the vector field components, and are indistinguishable from their scalar-field counterparts. Fuzzy Vector Dark Matter models can therefore give rise to halo cores with identical observational properties to the ones in scalar Fuzzy Dark Matter models. We also provide novel hedgehog vector soliton solutions, which cannot be observed in scalar-field theories. The gravitational binding of the lowest-energy hedgehog halo is about three times weaker than the ground-state vector soliton. Finally, we show that no spherically symmetric solitons exist with a divergence-free vector field.
We address the question whether a medium featuring $p + rho = 0$, dubbed $Lambda$- medium, has to be necessarily a cosmological constant. By using effective field theory, we show that this is not the case for a class of media comprising perfect fluid s, solids and special super solids, providing an explicit construction. The low energy excitations are non trivial and lensing, the growth of large scale structures can be used to clearly distinguish $Lambda$-media from a cosmological constant.
168 - Masaru Siino 2017
In (2+1)-dimensional pure gravity with cosmological constant, the dynamics of double torus universe with pinching parameter is investigated. Each mode of affine stretching deformation is illustrated in the context of horizontal foliation along the ho lomorphic quadratic differential. The formulation of the Einstein Hilbert action for the parameters of the affine stretching is developed. Then the dynamics along one holomorphic quadratic differential will be solved concretely.
100 - Kei Yamada , Hideki Asada 2015
Continuing work initiated in an earlier publication [H. Asada, Phys. Rev. D {bf 80}, 064021 (2009)], the gravitational radiation reaction to Lagranges equilateral triangular solution of the three-body problem is investigated in an analytic method. Th e previous work is based on the energy balance argument, which is sufficient for a two-body system because the number of degrees of freedom (the semimajor axis and the eccentricity in quasi-Keplerian cases, for instance) equals that of the constants of motion such as the total energy and the orbital angular momentum. In a system with three (or more) bodies, however, the number of degrees of freedom is more than that of the constants of motion. Therefore, the present paper discusses the evolution of the triangular system by directly treating the gravitational radiation reaction force to each body. The perturbed equations of motion are solved by using the Laplace transform technique. It is found that the triangular configuration is adiabatically shrinking and is kept in equilibrium by increasing the orbital frequency due to the radiation reaction if the mass ratios satisfy the Newtonian stability condition. Long-term stability involving the first post-Newtonian corrections is also discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا