ﻻ يوجد ملخص باللغة العربية
We present an analysis of well-posedness of constrained evolution of 3+1 formulations of GR. In this analysis we explicitly take into account the energy and momentum constraints as well as possible algebraic constraints on the evolution of high-frequency perturbations of solutions of Einsteins equations. In this respect, our approach is principally different from standard analyses of well-posedness of free evolution in general relativity. Our study reveals the existence of subsets of the linearized Einsteins equations that control the well-posedness of constrained evolution. It is demonstrated that the well-posedness of ADM, BSSN and other 3+1 formulations derived from ADM by adding combinations of constraints to the right-hand-side of ADM and/or by linear transformation of the dynamical ADM variables depends entirely on the properties of the gauge. For certain classes of gauges we formulate conditions for well-posedness of constrained evolution. This provides a new basis for constructing stable numerical integration schemes for a classical Arnowitt--Deser--Misner (ADM) and many other 3+1 formulations of general relativity.
Maximally dissipative boundary conditions are applied to the initial-boundary value problem for Einsteins equations in harmonic coordinates to show that it is well-posed for homogeneous boundary data and for boundary data that is small in a linearize
The purpose of this note is to point out that a naive application of symplectic integration schemes for Hamiltonian systems with constraints such as SHAKE or RATTLE which preserve holonomic constraints encounters difficulties when applied to the nume
This lecture is devoted to the problem of computing initial data for the Cauchy problem of 3+1 general relativity. The main task is to solve the constraint equations. The conformal technique, introduced by Lichnerowicz and enhanced by York, is presen
We describe a numerical code that solves Einsteins equations for a Schwarzschild black hole in spherical symmetry, using a hyperbolic formulation introduced by Choquet-Bruhat and York. This is the first time this formulation has been used to evolve a
We produce the first astrophysically-relevant numerical binary black hole gravitational waveform in a higher-curvature theory of gravity beyond general relativity. We simulate a system with parameters consistent with GW150914, the first LIGO detectio