ﻻ يوجد ملخص باللغة العربية
This lecture is devoted to the problem of computing initial data for the Cauchy problem of 3+1 general relativity. The main task is to solve the constraint equations. The conformal technique, introduced by Lichnerowicz and enhanced by York, is presented. Two standard methods, the conformal transverse-traceless one and the conformal thin sandwich, are discussed and illustrated by some simple examples. Finally a short review regarding initial data for binary systems (black holes and neutron stars) is given.
The production of numerical relativity waveforms that describe quasicircular binary black hole mergers requires high-quality initial data, and an algorithm to iteratively reduce residual eccentricity. To date, these tools remain closed source, or in
This document proposes data formats to exchange numerical relativity results, in particular gravitational waveforms. The primary goal is to further the interaction between gravitational-wave source modeling groups and the gravitational-wave data-anal
Gravitational waves deliver information in exquisite detail about astrophysical phenomena, among them the collision of two black holes, a system completely invisible to the eyes of electromagnetic telescopes. Models that predict gravitational wave si
We discuss results that have been obtained from the implementation of the initial round of testbeds for numerical relativity which was proposed in the first paper of the Apples with Apples Alliance. We present benchmark results for various codes whic
We produce the first astrophysically-relevant numerical binary black hole gravitational waveform in a higher-curvature theory of gravity beyond general relativity. We simulate a system with parameters consistent with GW150914, the first LIGO detectio