ترغب بنشر مسار تعليمي؟ اضغط هنا

Geophysical studies with laser-beam detectors of gravitational waves

140   0   0.0 ( 0 )
 نشر من قبل Leonid Grishchuk P.
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English
 تأليف L. P. Grishchuk




اسأل ChatGPT حول البحث

The existing high technology laser-beam detectors of gravitational waves may find very useful applications in an unexpected area - geophysics. To make possible the detection of weak gravitational waves in the region of high frequencies of astrophysical interest, ~ 30 - 10^3 Hz, control systems of laser interferometers must permanently monitor, record and compensate much larger external interventions that take place in the region of low frequencies of geophysical interest, ~ 10^{-5} - 3 X 10^{-3} Hz. Such phenomena as tidal perturbations of land and gravity, normal mode oscillations of Earth, oscillations of the inner core of Earth, etc. will inevitably affect the performance of the interferometers and, therefore, the information about them will be stored in the data of control systems. We specifically identify the low-frequency information contained in distances between the interferometer mirrors (deformation of Earth) and angles between the mirrors suspensions (deviations of local gravity vectors and plumb lines). We show that the access to the angular information may require some modest amendments to the optical scheme of the interferometers, and we suggest the ways of doing that. The detailed evaluation of environmental and instrumental noises indicates that they will not prevent, even if only marginally, the detection of interesting geophysical phenomena. Gravitational-wave instruments seem to be capable of reaching, as a by-product of their continuous operation, very ambitious geophysical goals, such as observation of the Earths inner core oscillations.



قيم البحث

اقرأ أيضاً

209 - L. P. Grishchuk 2003
The renewed serious interest to possible practical applications of gravitational waves is encouraging. Building on previous work, I am arguing that the strong variable electromagnetic fields are appropriate systems for the generation and detection of high-frequency gravitational waves (HFGW). The advantages of electromagnetic systems are clearly seen in the proposed complete laboratory experiment, where one has to ensure the efficiency of, both, the process of generation and the process of detection of HFGW. Within the family of electromagnetic systems, one still has a great variety of possible geometrical configurations, classical and quantum states of the electromagnetic field, detection strategies, etc. According to evaluations performed 30 years ago, the gap between the HFGW laboratory signal and its level of detectability is at least 4 orders of magnitude. Hopefully, new technologies of today can remove this gap and can make the laboratory experiment feasible. The laboratory experiment is bound to be expensive, but one should remember that a part of the cost is likely to be reimbursed from the Nobel prize money ! Electromagnetic systems seem also appropriate for the detection of high-frequency end of the spectrum of relic gravitational waves. Although the current effort to observe the stochastic background of relic gravitational waves is focused on the opposite, very low-frequency, end of the spectrum, it would be extremely valuable for fundamental science to detect, or put sensible upper limits on, the high-frequency relic gravitational waves. I will briefly discuss the origin of relic gravitational waves, the expected level of their high-frequency signal, and the existing estimates of its detectability.
We rigorously analyze the frequency response functions and antenna sensitivity patterns of three types of interferometric detectors to scalar mode of gravitational waves which is predicted to exist in the scalar-tensor theory of gravity. By a straigh tforward treatment, we show that the antenna sensitivity pattern of the simple Michelson interferometric detector depends strongly on the wave length $lambda_{rm SGW}$ of the scalar mode of gravitational waves if $lambda_{rm SGW}$ is comparable to the arm length of the interferometric detector. For the Delay-Line and Fabry-Perot interferometric detectors with arm length much shorter than $lambda_{rm SGW}$, however, the antenna sensitivity patterns depend weakly on $lambda_{rm SGW}$ even though $lambda_{rm SGW}$ is comparable to the effective path length of those interferometers. This agrees with the result obtained by Maggiore and Nicolis.
164 - Lam Hui , Sean T. McWilliams , 2012
Gravitational waves at suitable frequencies can resonantly interact with a binary system, inducing changes to its orbit. A stochastic gravitational-wave background causes the orbital elements of the binary to execute a classic random walk, with the v ariance of orbital elements growing with time. The lack of such a random walk in binaries that have been monitored with high precision over long time-scales can thus be used to place an upper bound on the gravitational-wave background. Using periastron time data from the Hulse-Taylor binary pulsar spanning ~30 years, we obtain a bound of h_c < 7.9*10^(-14) at ~10^(-4) Hz, where h_c is the strain amplitude per logarithmic frequency interval. Our constraint complements those from pulsar timing arrays, which probe much lower frequencies, and ground-based gravitational-wave observations, which probe much higher frequencies. Interesting sources in our frequency band, which overlaps the lower sensitive frequencies of proposed space-based observatories, include white-dwarf/supermassive black-hole binaries in the early/late stages of inspiral, and TeV scale preheating or phase transitions. The bound improves as (time span)^(-2) and (sampling rate)^(-1/2). The Hulse-Taylor constraint can be improved to ~3.8*10^(-15) with a suitable observational campaign over the next decade. Our approach can also be applied to other binaries, including (with suitable care) the Earth-Moon system, to obtain constraints at different frequencies. The observation of additional binary pulsars with the SKA could reach a sensitivity of h_c ~ 3*10^(-17).
We have set up and tested a pipeline for processing the data from a spherical gravitational wave detector with six transducers. The algorithm exploits the multichannel capability of the system and provides a list of candidate events with their arriva l direction. The analysis starts with the conversion of the six detector outputs into the scalar and the five quadrupolar modes of the sphere, which are proportional to the corresponding gravitational wave spherical components. Event triggers are then generated by an adaptation of the WaveBurst algorithm. Event validation and direction reconstruction are made by cross-checking two methods of different inspiration: geometrical (lowest eigenvalue) and probabilistic (maximum likelihood). The combination of the two methods is able to keep substantially unaltered the efficiency and can reduce drastically the detections of fake events (to less than ten per cent). We show a quantitative test of these ideas by simulating the operation of the resonant spherical detector miniGRAIL, whose planned sensitivity in its frequency band (few hundred Hertzs around 3 kHz) is comparable with the present LIGO one.
This letter reports the results of a search for a stochastic background of gravitational waves (GW) at 100 MHz by laser interferometry. We have developed a GW detector, which is a pair of 75-cm baseline synchronous recycling (resonant recycling) inte rferometers. Each interferometer has a strain sensitivity of ~ 10^{-16} Hz^{-1/2} at 100 MHz. By cross-correlating the outputs of the two interferometers within 1000 seconds, we found h_{100}^2 Omega_{gw} < 6 times 10^{25} to be an upper limit on the energy density spectrum of the GW background in a 2-kHz bandwidth around 100 MHz, where a flat spectrum is assumed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا