ترغب بنشر مسار تعليمي؟ اضغط هنا

Search for a stochastic background of 100-MHz gravitational waves with laser interferometers

136   0   0.0 ( 0 )
 نشر من قبل Tomotada Akutsu
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

This letter reports the results of a search for a stochastic background of gravitational waves (GW) at 100 MHz by laser interferometry. We have developed a GW detector, which is a pair of 75-cm baseline synchronous recycling (resonant recycling) interferometers. Each interferometer has a strain sensitivity of ~ 10^{-16} Hz^{-1/2} at 100 MHz. By cross-correlating the outputs of the two interferometers within 1000 seconds, we found h_{100}^2 Omega_{gw} < 6 times 10^{25} to be an upper limit on the energy density spectrum of the GW background in a 2-kHz bandwidth around 100 MHz, where a flat spectrum is assumed.

قيم البحث

اقرأ أيضاً

Recently, observational searches for gravitational wave background (GWB) have developed and given direct and indirect constraints on the energy density of GWB in a broad range of frequencies. These constraints have already rejected some theoretical m odels of large GWB spectra. However, at 100 MHz, there is no strict upper limit from direct observation, though the indirect limit by He4 abundance due to big-bang nucleosynthesis exists. In this paper, we propose an experiment with laser interferometers searching GWB at 100 MHz. We considered three detector designs and evaluated the GW response functions of a single detector. As a result, we found that, at 100 MHz, the most sensitive detector is the design, a so-called synchronous recycling interferometer, which has better sensitivity than an ordinary Fabry-Perot Michelson interferometer by a factor of 3.3 at 100 MHz. We also give the best sensitivity achievable at 100 MHz with realistic experimental parameters.
155 - John Ellis , Ville Vaskonen 2020
Atom interferometers (AIs) on earth and in space offer good capabilities for measuring gravitational waves (GWs) in the mid-frequency deciHz band, complementing the sensitivities of the LIGO/Virgo and LISA experiments and enabling probes of possible modifications of the general relativity predictions for GW propagation. We illustrate these capabilities using the projected sensitivities of the AION (terrestrial) and AEDGE (space-based) AI projects, showing that AION could improve the present LIGO/Virgo direct limit on the graviton mass by a factor $sim 40$ to $simeq 10^{-24},$eV, and AEDGE could improve the limit by another order of magnitude. AION and AEDGE will also have greater sensitivity than LIGO to some scenarios for Lorentz violation.
Recently, observational searches for gravitational wave background (GWB) have been developed and given constraints on the energy density of GWB in a broad range of frequencies. These constraints have already resulted in the rejection of some theoreti cal models of relatively large GWB spectra. However, at 100 MHz, there is no strict upper limit from direct observation, though an indirect limit exists due to He4 abundance due to big-bang nucleosynthesis. In our previous paper, we investigated the detector designs that can effectively respond to GW at high frequencies, where the wavelength of GW is comparable to the size of a detector, and found that the configuration, a so-called synchronous-recycling interferometer is best at these sensitivity. In this paper, we investigated the optimal location of two synchronous-recycling interferometers and derived their cross-correlation sensitivity to GWB. We found that the sensitivity is nearly optimized and hardly changed if two coaligned detectors are located within a range 0.2 m, and that the sensitivity achievable in an experiment is far below compared with the constraint previously obtained in experiments.
String length is a fundamental parameter in string theory. A strategy on how to determine it through experiments is proposed. Our work focuses on the stochastic gravitational waves from string gas cosmology. With the help of the Lambert W function, w e find the non-Hagedorn phase is ruled out by the B-mode polarization in the cosmic microwave background. The spectrum from the Hagedorn phase with a logarithmic term is found to be unique. We propose a strategy on how to constrain the string length through stochastic gravitational waves. Considering the sensitivities of the current and the upcoming detectors, the string length is found to be lower than 7 $sim$ orders of the Planck scale.
We introduce the concept of stationary graviton non-Gaussianity (nG), an observable that can be probed in terms of 3-point correlation functions of a stochastic gravitational wave (GW) background. When evaluated in momentum space, stationary nG corre sponds to folded bispectra of graviton nG. We determine 3-point overlap functions for testing stationary nG with pulsar timing array GW experiments, and we obtain the corresponding optimal signal-to-noise ratio. For the first time, we consider 3-point overlap functions including scalar graviton polarizations (which can be motivated in theories of modified gravity); moreover, we also calculate 3-point overlap functions for correlating pulsar timing array with ground based GW detectors. The value of the optimal signal-to-noise ratio depends on the number and position of monitored pulsars. We build geometrical quantities characterizing how such ratio depends on the pulsar system under consideration, and we evaluate these geometrical parameters using data from the IPTA collaboration. We quantitatively show how monitoring a large number of pulsars can increase the signal-to-noise ratio associated with measurements of stationary graviton nG.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا