ترغب بنشر مسار تعليمي؟ اضغط هنا

Mechanical quality factor of a sapphire fiber at cryogenic temperatures

54   0   0.0 ( 0 )
 نشر من قبل Takashi Uchiyama
 تاريخ النشر 2000
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A mechanical quality factor of $1.1 times 10^{7}$ was obtained for the 199 Hz bending vibrational mode in a monocrystalline sapphire fiber at 6 K. Consequently, we confirm that pendulum thermal noise of cryogenic mirrors used for gravitational wave detectors can be reduced by the sapphire fiber suspension.

قيم البحث

اقرأ أيضاً

Current interferometric gravitational wave detectors (IGWDs) are operated at room temperature with test masses made from fused silica. Fused silica shows very low absorption at the laser wavelength of 1064 nm. It is also well suited to realize low th ermal noise floors in the detector signal band since it offers low mechanical loss, i. e. high quality factors (Q factors) at room temperature. However, for a further reduction of thermal noise, cooling the test masses to cryogenic temperatures may prove an interesting technique. Here we compare the results of Q factor measurements at cryogenic temperatures of acoustic eigenmodes of test masses from fused silica and its crystalline counterpart. Our results show that the mechanical loss of fused silica increases with lower temperature and reaches a maximum at 30 K for frequencies of slightly above 10 kHz. The losses of crystalline quartz generally show lower values and even fall below the room temperature values of fused silica below 10 K. Our results show that in comparison to fused silica, crystalline quartz has a considerably narrower and lower dissipation peak on cooling and thus has more promise as a test mass material for IGDWs operated at cryogenic temperatures. The origin of the different Q factor versus temperature behavior of the two materials is discussed.
Resonance properties of nanomechanical resonators based on doubly clamped silicon nanowires, fabricated from silicon-on-insulator and coated with a thin layer of aluminum, were experimentally investigated. Resonance frequencies of the fundamental mod e were measured at a temperature of $20,mathrm{mK}$ for nanowires of various sizes using the magnetomotive scheme. The measured values of the resonance frequency agree with the estimates obtained from the Euler-Bernoulli theory. The measured internal quality factor of the $5,mathrm{mu m}$-long resonator, $3.62times10^4$, exceeds the corresponding values of similar resonators investigated at higher temperatures. The structures presented can be used as mass sensors with an expected sensitivity $sim 6 times 10^{-20},mathrm{g},mathrm{Hz}^{-1/2}$.
We demonstrate cooling of ultrathin fiber tapers coupled with nitrogen vacancy (NV) centers in nanodiamonds to cryogenic temperatures. Nanodiamonds containing multiple NV centers are deposited on the subwavelength 480-nm-diameter nanofiber region of fiber tapers. The fiber tapers are successfully cooled to 9 K using our home-built mounting holder and an optimized cooling speed. The fluorescence from the nanodiamond NV centers is efficiently channeled into a single guided mode and shows characteristic sharp zero-phonon lines of both neutral and negatively charged NV centers. The present nanofiber/nanodiamond hybrid systems at cryogenic temperatures can be used as NV-based quantum information devices and for highly sensitive nanoscale magnetometry in a cryogenic environment.
We have observed the transversal vibration mode of suspended carbon nanotubes at millikelvin temperatures by measuring the single-electron tunneling current. The suspended nanotubes are actuated contact-free by the radio frequency electric field of a nearby antenna; the mechanical resonance is detected in the time-averaged current through the nanotube. Sharp, gate-tuneable resonances due to the bending mode of the nanotube are observed, combining resonance frequencies of up to u_0 = 350 MHz with quality factors above Q = 10^5, much higher than previously reported results on suspended carbon nanotube resonators. The measured magnitude and temperature dependence of the Q-factor shows a remarkable agreement with the intrinsic damping predicted for a suspended carbon nanotube. By adjusting the RF power on the antenna, we find that the nanotube resonator can easily be driven into the non-linear regime.
74 - M. Will , M. Hamer , M. Muller 2018
Ultralight mechanical resonators based on low-dimensional materials are well suited as exceptional transducers of minuscule forces or mass changes. However, the low dimensionality also provides a challenge to minimize resistive losses and heating. He re, we report on a novel approach that aims to combine different 2D materials to tackle this challenge. We fabricated a heterostructure mechanical resonator consisting of few layers of niobium diselenide (NbSe$_2$) encapsulated by two graphene sheets. The hybrid membrane shows high quality factors up to 245000 at low temperatures, comparable to the best few-layer graphene mechanical resonators. In contrast to few-layer graphene resonators, the device shows reduced electrical losses attributed to the lower resistivity of the NbSe$_2$ layer. The peculiar low temperature dependence of the intrinsic quality factor points to dissipation over two-level systems which in turn relax over the electronic system. Our high sensitivity readout is enabled by coupling the membrane to a superconducting cavity which allows for the integration of the hybrid mechanical resonator as a sensitive and low loss transducer in future quantum circuits.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا