ﻻ يوجد ملخص باللغة العربية
These lecture notes contain an exposition of basic ideas of K-theory and cyclic cohomology. I begin with a list of examples of various situations in which the K-functor of Grothendieck appears naturally, including the rudiments of the topological and algebraic K-theory, K-theory of C^*-algebras, and K-homology. I then discuss elementary properties of cyclic cohomology using the Cuntz-Quillen version of the calculus of noncommutative differential forms on an algebra. As an example of the relation between the two theories we describe the Chern homomorphism and various index-theorem type statements. The remainder of the notes contains some more detailed calculations in cyclic and reduced cyclic cohomology. A key tool in this part is Goodwillies theorem on the cyclic complex of a semi-direct product algebra. The final chapter gives an exposition of the entire cyclic cohomology of Banach algebras from the point of view of supertraces on the Cuntz algebra. The results discussed here include the simplicial normalization of the entire cyclic cohomology, homotopy invariance and the action of derivations.
An introduction to the theory of bundle gerbes and their relationship to Hitchin-Chatterjee gerbes is presented. Topics covered are connective structures, triviality and stable isomorphism as well as examples and applications.
We give a brief account of the key properties of elliptic hypergeometric integrals -- a relatively recently discovered top class of transcendental special functions of hypergeometric type. In particular, we describe an elliptic generalization of Eule
A brief introduction to chiral perturbation theory, the effective field theory of quantum chromodynamics at low energies, is given.
This paper provides an introduction to equivariant cohomology and homology using the approach of Goresky, Kottwitz, and MacPherson. When a group G acts suitably on a variety X, the equivariant cohomology of X can be computed using the combinatorial d
There is much speculation and a modest amount of evidence that certain mesons might form quasi-bound states with nuclei to produce really exotic states of matter. For this to be a practical possibility, the interaction between the meson and nucleons