ترغب بنشر مسار تعليمي؟ اضغط هنا

An Introduction to Bundle Gerbes

120   0   0.0 ( 0 )
 نشر من قبل Professor Michael K. Murray
 تاريخ النشر 2008
  مجال البحث
والبحث باللغة English
 تأليف Michael K. Murray




اسأل ChatGPT حول البحث

An introduction to the theory of bundle gerbes and their relationship to Hitchin-Chatterjee gerbes is presented. Topics covered are connective structures, triviality and stable isomorphism as well as examples and applications.



قيم البحث

اقرأ أيضاً

We introduce the notion of a general cup product bundle gerbe and use it to define the Weyl bundle gerbe on T x SU(n)/T. The Weyl map from T x SU(n)/T to SU(n) is then used to show that the pullback of the basic bundle gerbe on SU(n) defined by the s econd two authors is stably isomorphic to the Weyl bundle gerbe as SU(n)-equivariant bundle gerbes. Both bundle gerbes come equipped with connections and curvings and by considering the holonomy of these we show that these bundle gerbes are not D-stably isomorphic.
Let $(P, Y)$ be a bundle gerbe over a fibre bundle $Y to M$. We show that if $M$ is simply-connected and the fibres of $Y to M$ are connected and finite-dimensional then the Dixmier-Douady class of $(P, Y)$ is torsion. This corrects and extends an earlier result of the first author.
109 - V. P. Spiridonov 2019
We give a brief account of the key properties of elliptic hypergeometric integrals -- a relatively recently discovered top class of transcendental special functions of hypergeometric type. In particular, we describe an elliptic generalization of Eule rs and Selbergs beta integrals, elliptic analogue of the Euler-Gauss hypergeometric function and some multivariable elliptic hypergeometric functions on root systems. The elliptic Fourier transformation and corresponding integral Bailey lemma technique is outlined together with a connection to the star-triangle relation and Coxeter relations for a permutation group. We review also the interpretation of elliptic hypergeometric integrals as superconformal indices of four dimensional supersymmetric quantum field theories and corresponding applications to Seiberg type dualities.
66 - Jacek Brodzki 1996
These lecture notes contain an exposition of basic ideas of K-theory and cyclic cohomology. I begin with a list of examples of various situations in which the K-functor of Grothendieck appears naturally, including the rudiments of the topological and algebraic K-theory, K-theory of C^*-algebras, and K-homology. I then discuss elementary properties of cyclic cohomology using the Cuntz-Quillen version of the calculus of noncommutative differential forms on an algebra. As an example of the relation between the two theories we describe the Chern homomorphism and various index-theorem type statements. The remainder of the notes contains some more detailed calculations in cyclic and reduced cyclic cohomology. A key tool in this part is Goodwillies theorem on the cyclic complex of a semi-direct product algebra. The final chapter gives an exposition of the entire cyclic cohomology of Banach algebras from the point of view of supertraces on the Cuntz algebra. The results discussed here include the simplicial normalization of the entire cyclic cohomology, homotopy invariance and the action of derivations.
68 - Colin Wilkin 2016
There is much speculation and a modest amount of evidence that certain mesons might form quasi-bound states with nuclei to produce really exotic states of matter. For this to be a practical possibility, the interaction between the meson and nucleons at low energies must be strong and attractive and the production rates healthy. The conditions for this are surveyed for the light mesons. How this might lead to quasi-bound states is then discussed in a few typical cases.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا