ﻻ يوجد ملخص باللغة العربية
An introduction to the theory of bundle gerbes and their relationship to Hitchin-Chatterjee gerbes is presented. Topics covered are connective structures, triviality and stable isomorphism as well as examples and applications.
We introduce the notion of a general cup product bundle gerbe and use it to define the Weyl bundle gerbe on T x SU(n)/T. The Weyl map from T x SU(n)/T to SU(n) is then used to show that the pullback of the basic bundle gerbe on SU(n) defined by the s
Let $(P, Y)$ be a bundle gerbe over a fibre bundle $Y to M$. We show that if $M$ is simply-connected and the fibres of $Y to M$ are connected and finite-dimensional then the Dixmier-Douady class of $(P, Y)$ is torsion. This corrects and extends an earlier result of the first author.
We give a brief account of the key properties of elliptic hypergeometric integrals -- a relatively recently discovered top class of transcendental special functions of hypergeometric type. In particular, we describe an elliptic generalization of Eule
These lecture notes contain an exposition of basic ideas of K-theory and cyclic cohomology. I begin with a list of examples of various situations in which the K-functor of Grothendieck appears naturally, including the rudiments of the topological and
There is much speculation and a modest amount of evidence that certain mesons might form quasi-bound states with nuclei to produce really exotic states of matter. For this to be a practical possibility, the interaction between the meson and nucleons