ﻻ يوجد ملخص باللغة العربية
A Lyndon word is a non-empty word strictly smaller in the lexicographic order than any of its suffixes, except itself and the empty word. In this paper, we show how Lyndon words can be used in the distributed control of a set of n weak mobile robots. By weak, we mean that the robots are anonymous, memoryless, without any common sense of direction, and unable to communicate in an other way than observation. An efficient and simple deterministic protocol to form a regular n-gon is presented and proven for n prime.
In this paper, we extend the notion of Lyndon word to transfinite words. We prove two main results. We first show that, given a transfinite word, there exists a unique factorization in Lyndon words that are densely non-increasing, a relaxation of the
A generalized lexicographical order on infinite words is defined by choosing for each position a total order on the alphabet. This allows to define generalized Lyndon words. Every word in the free monoid can be factorized in a unique way as a nonincr
In this paper, we first formalize the problem to be solved, i.e., the Scatter Problem (SP). We then show that SP cannot be deterministically solved. Next, we propose a randomized algorithm for this problem. The proposed solution is trivially self-sta
In this paper we compare two finite words $u$ and $v$ by the lexicographical order of the infinite words $u^omega$ and $v^omega$. Informally, we say that we compare $u$ and $v$ by the infinite order. We show several properties of Lyndon words express
We study the convergence problem in fully asynchronous, uni-dimensional robot networks that are prone to Byzantine (i.e. malicious) failures. In these settings, oblivious anonymous robots with arbitrary initial positions are required to eventually co